Equivalenza di un moto in un campo centrale con un moto unidimensionale. Il potenziale centrifugo

venerdì, Aprile 9th, 2021

campo centrale,moto unidimensionale,potenziale centrifugo,momento angolare
Fig. 1


Definizione
Un campo centrale è dato da


dove r=xi+yj+zk è il vettore posizione riferito a una terna inerziale Oxyz, mentre F(r) è una funzione reale sufficientemente regolare (continua e dotata di derivata continua).

Da questa definizione segue che un campo centrale esibisce una simmetria sferica, giacché non esistono direzioni privilegiate nello spazio fisico (il modulo della forza non dipende dalla direzione). Dalle lezioni di Fisica 1 sappiamo che un campo centrale è conservativo. L'energia potenziale è


(altro…)




Apocentro e pericentro di un'orbita

lunedì, Marzo 29th, 2021

apocentro e pericentro di un'orbita


Riprendiamo l'integrale generale dell'equazione differenziale nota come prima forma dell'equazione delle orbite:


assumendo ovviamente Lz non nullo, giacché nel caso contrario l'orbita degenera in un segmento di retta. In tal modo è definita (conoscendo l'energia potenziale V(r)) l'energia potenziale efficace e quindi, la regione classicamente accessibile:

Si osservi che l'anomalia φ varia monotonamente, giacché

cioè la sua derivata rispetto al tempo ha lo stesso segno della componente z del momento della quantità di moto della particella.
Senza perdita di generalità, supponiamo che l'energia potenziale efficace sia del tipo di fig. 1. Ne segue

cioè l'orbita è contenuta nella corona circolare di centro l'origine e raggi rmin,rmax.

rmin è il modulo del vettore posizione del punto più vicino al centro della forza. Chiamiamo tale punto pericentro. Allo stesso modo, chiamiamo apocentro il punto più lontano, i.e. di vettore posizione di modulo rmax. Le rispettive anomalie sono:


Ne segue l'angolo tra pericentro e apocentro:

È facile persuadersi che

Diversamente l'orbita è densa nella predetta corona circolare.

Indice delle lezioni