[¯|¯] La definizione di spazio metrico
mercoledì, Settembre 19th, 2018
Si definisce spazio metrico un insieme X sul quale è definita una funzione

denominata distanza o metrica, che gode delle seguenti proprietà:
La metrica più nota è quella definita su uno spazio vettoriale normato, ossia uno spazio vettoriale dotato di norma ||.||, mediante la formula:

Se lo spazio vettoriale è Rn e || || è la norma euclidea, la precedente formula diventa:

e ci fornisce la distanza euclidea tra due punti x e y di Rn ovvero la lunghezza del segmento che li unisce. Questa è indubbiamente la distanza più comune, quella nota a tutti, anche ai non matematici. Ma in matematica esistono infinite metriche, alcune delle quali apparentemente “strambe”. Vediamone qualcuna.
Consideriamo un insieme arbitrario X e poniamo:

con x,y appartenenti a X. Tale funzione prende il nome di metrica discreta e, anche se può sembrare assurdo (ogni elemento di X dista 1 da tutti gli altri), è effettivamente una distanza. Per dimostrarlo basta dimostrare che d(x, y) soddisfa tutte e quattro le proprietà che definiscono una metrica. Le prime tre si verificano immediatamente; per provare che vale anche la disuguaglianza triangolare, basta considerare i casi possibili:

(altro…)




Congettura di Riemann
Trasformata discreta di Fourier
Trasformata di Fourier nel senso delle distribuzioni
Trasformata di Fourier
Infinitesimi ed infiniti
Limiti notevoli
Punti di discontinuità
Misura di Peano Jordan
Eserciziario sugli integrali
Differenziabilità
Differenziabilità (2)
Esercizi sui limiti
Appunti sulle derivate
Studio della funzione
Esercizi sugli integrali indefiniti
Algebra lineare
Analisi Matematica 2
Analisi funzionale
Entanglement quantistico
Spazio complesso
Biliardo di Novikov
Intro alla Meccanica quantistica
Entanglement Quantistico
