[¯|¯] Traiettoria di un punto materiale. Equazioni finite del moto
venerdì, Marzo 24th, 2017
Fig. 1. Traiettoria di un punto materiale le cui equazioni finite del moto sono x=b(2+cosωt)cosωt,y=b(2+cosωt)sinωt,z=sinωt, per t variabile in [0,π] e b=1, ω=8s^-1
Nel post precedente abbiamo stabilito che per un assegnato corpo C, un osservatore Ω è in grado di costruire un insieme non vuoto

ovvero l'insieme delle posizioni di C in funzione del tempo t:

Per esplicitare tale dipendenza funzionale, è innanzitutto necessario definire lo "spazio ambiente" in cui si muove C. In Meccanica Classica si assume come ambiente del moto lo spazio euclideo 3-dimensionale E3 che noi identifichiamo semplicemente con lo spazio vettoriale euclideo R³. L'osservatore Ω verrà rappresentato da un riferimento cartesiano ortogonale K(Oxyz) che definisce un sistema di riferimento noto come terna solidale a Ω.
Per fissare le idee consideriamo il caso più semplice in cui C è un punto materiale P. Quindi:

(altro…)



Congettura di Riemann
Trasformata discreta di Fourier
Trasformata di Fourier nel senso delle distribuzioni
Trasformata di Fourier
Infinitesimi ed infiniti
Limiti notevoli
Punti di discontinuità
Misura di Peano Jordan
Eserciziario sugli integrali
Differenziabilità
Differenziabilità (2)
Esercizi sui limiti
Appunti sulle derivate
Studio della funzione
Esercizi sugli integrali indefiniti
Algebra lineare
Analisi Matematica 2
Analisi funzionale
Entanglement quantistico
Spazio complesso
Biliardo di Novikov
Intro alla Meccanica quantistica
Entanglement Quantistico
