[¯|¯] La funzione esponenziale integrale nel campo complesso
mercoledì, Aprile 19th, 2017
Per estendere l'esponenziale integrale al campo complesso, è preferibile rammentare la nozione di integrale complesso. A tale scopo consideriamo una funzione f(z) della variabile complessa z=x+iy, che assumiamo continua in un campo connesso A del piano xy. Se z0,z1 appartengono al campo A, denotiamo con γ(z0,z1) un assegnato arco di curva generalmente regolare di estremi z0 e z1.
Definizione
Si dice integrale complesso della f(z) esteso a γ nel verso da z0 a z2, l'integrale curvilineo della forma differenziale lineare

esteso all'arco γ da da P0(x0,y0) a P1(x1,y1), essendo z0=x0+iy0,z1=x1+iy1. In simboli:

(altro…)






Congettura di Riemann
Trasformata discreta di Fourier
Trasformata di Fourier nel senso delle distribuzioni
Trasformata di Fourier
Infinitesimi ed infiniti
Limiti notevoli
Punti di discontinuità
Misura di Peano Jordan
Eserciziario sugli integrali
Differenziabilità
Differenziabilità (2)
Esercizi sui limiti
Appunti sulle derivate
Studio della funzione
Esercizi sugli integrali indefiniti
Algebra lineare
Analisi Matematica 2
Analisi funzionale
Entanglement quantistico
Spazio complesso
Biliardo di Novikov
Intro alla Meccanica quantistica
Entanglement Quantistico
