[¯|¯] Battendo (senza pizzicare) una corda infinitamente estesa
Ottobre 17th, 2018 | by Marcello Colozzo |Abbiamo esaminato il caso 1. Passiamo ora alla corda (infinitamente estesa) e battuta, per cui inizialmente si trova nella configurazione di equilibrio, mentre il campo scalare della velocità iniziale è una assegnata funzione ψ(x). Quindi definiamo:
La soluzione del problema di Cauchy assegnato, si scrive:
che è ancora una sovrapposizione di due onde piane che si propagano a velocità c in versi opposti. Nell'istante t=0 tali onde interferiscono distruttivamente, cancellandosi a vicenda:
come appunto deve essere, giacché la corda è inizialmente in equilibrio. Ad esempio, se il campo di velocità iniziale è una gaussiana:
si ha
essendo erf(x) la funzione degli errori. In fig. 1 sono plottati gli andamenti delle varie grandezze, nonché la u(x,0) da cui vediamo che è identicamente nulla.
Puoi contribuire all’uscita di nuovi articoli ed e-books gratuiti che il nostro staff potrà mettere a disposizione per te e migliaia di altri lettori.
L'evoluzione dinamica della corda battuta con il campo di velocità assegnato, è
Per t=t1=8s presenta l'andamento riportato in figura:
Ciò non si verifica solo per una campo gaussiano come quello appena visto, ma è una proprietà generale a patto che la distribuzione sia sufficientemente piccata. Più precisamente, dato un campo di velocità iniziale ψ(x) sufficientemente piccato intorno a x=0 (o a un punto x0), si ha:
per cui
Cioè per x»1 la funzione ?(x) è approssimativamente costante. Ne consegue
onde lo spostamento a regime
che è una costante. In altri termini, la corda tende a traslare nell'istante in cui le onde componenti sono sufficientemente lontane.
Sostienici
Puoi contribuire all’uscita di nuovi articoli ed e-books gratuiti che il nostro staff potrà mettere a disposizione per te e migliaia di altri lettori.
No TweetBacks yet. (Be the first to Tweet this post)
Tags: equazione della corda vibrante, equazioni differenziali alle derivate parziali, soluzione di D'Alembert
Articoli correlati