beylikdüzü eskort

evden eve nakliyat

klima kombi servisi

Annunci AdSense






[¯|¯] La funzione potenza di esponente reale

Novembre 27th, 2014 | by extrabyte |

funzione potenza di esponente reale positivo

In questo post studiamo un'importante funzione elementare: la cosiddetta funzione potenza di esponente reale. Iniziamo il nostro studio considerando il caso speciale di esponente positivo. Tutto questo ci porterà fisiologicamente ad alcuni luoghi geometrici notevoli come la famosa parabola di Neile oltre alla generalizzazione del concetto di parabola (parabola di ordine m).

Definizione
Assegnato , dicesi funzione potenza di esponente reale, la funzione reale:. Cioè se:

funzione potenza

Per determinare l'insieme di definizione di tale funzione consideriamo:

dove è l 'insieme dei numeri razionali. Prima di discutere i suddetti casi, assumiamo
. Nel caso 1, è irrazionale per cui la potenza ha significato solo per x non negativo. Quindi nel caso 1 l'insieme di definizione è X = [0,+oo).
Nel caso 2:

funzione potenza

con m,n primi tra loro.








Pertanto:


Ciò implica:

Se


Tale relazione ci dice che per ciò che riguarda la ricerca dell'insieme di definizione.... Continua a leggere in PDF

No TweetBacks yet. (Be the first to Tweet this post)

Tags: , ,

Articoli correlati

Commenta l'esercizio

istanbul escort porno izle film izle