Forze centripete e centrifughe
martedì, Giugno 9th, 2020
Nel piano coordinato xy di un sistema di riferimento inerziale K(Oxyz), una pallina di massa m è vincolata a muoversi lungo una circonferenza di centro l'origine O e raggio r (il vincolo è realizzato da un filo inestensibile e di massa nulla), come illustrato in figura:

Trascuriamo l'attrito e supponiamo che il moto sia circolare uniforme. Dalla cinematica del punto materiale sappiamo che l'accelerazione della pallina è puramente normale (o centripeta):

dove v è la velocità scalare (costante) e n è il versore della normale alla traiettoria:

avendo introdotto il vettore posizione r nel piano coordinato in cui si svolge il moto (fig. 1). Introducendo la velocità angolare

si ha

Cioè

Per il secondo principio della dinamica, la pallina è soggetta a una forza

che chiamiamo forza centripeta. Consideriamo ora un secondo sistema di riferimento K'(Ox'y'z') solidale alla pallina. Più precisamente, nell'istante iniziale t=0 (pallina ferma) è K sovrapposto a K', mentre a t > 0 K' ruota attorno all'asse z di K con velocità angolare ω. È chiaro che K' non è un sistema inerziale in quanto non compie un moto di traslazione uniforme (rispetto a K). Dal momento che K' ruota con velocità angolare ω, un qualunque osservatore Ω fermo in K, vedrà la pallina occupare sempre la stessa posizione. Ne consegue (in virtù del secondo principio della dinamica) che per Ω è F=0, essendo F il risultante delle forze applicate alla pallina. Immaginiamo ora la seguente configurazione sperimentale: a un istante t1 > 0 l'osservatore Ω taglia il filo che realizza il vincolo. A t > t1, Ω vedrà la pallina compiere un moto rettilineo uniformemente accelerato nella direzione del filo e verso l'esterno della circonferenza di centro l'origine e raggio r (lunghezza del filo). Come potrebbe Ω calcolare la forza agente responsabile del moto accelerato della pallina? Il metodo più veloce consiste nel determinare la forza uguale e contraria applicata alla pallina nell'istante t1 affinché la pallina medesima resti in quiete. Ω scopririà allora, che tale forza opposta è proprio la forza centripeta stabilita dall'osservatore inerziale:

(altro…)



Congettura di Riemann
Trasformata discreta di Fourier
Trasformata di Fourier nel senso delle distribuzioni
Trasformata di Fourier
Infinitesimi ed infiniti
Limiti notevoli
Punti di discontinuità
Misura di Peano Jordan
Eserciziario sugli integrali
Differenziabilità
Differenziabilità (2)
Esercizi sui limiti
Appunti sulle derivate
Studio della funzione
Esercizi sugli integrali indefiniti
Algebra lineare
Analisi Matematica 2
Analisi funzionale
Entanglement quantistico
Spazio complesso
Biliardo di Novikov
Intro alla Meccanica quantistica
Entanglement Quantistico
