[¯|¯] Esempi di funzioni suriettive e di funzioni iniettive
mercoledì, Ottobre 1st, 2014Di seguito alcuni esempi di funzioni suriettive e di funzioni iniettive.
Esempio 1
Comunque prendiamo un insieme non vuoto , si chiama applicazione identica su , l'applicazione:
\begin{equation}
\underset
{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\longrightarrow
x,\,\,\,\,\forall x\in X}{I_{X}:X\rightarrow X}\label{eq: appl_id_x}%
\end{equation}
Abbiamo già incontrato l'applicazione identica nella Lezione 5, definendola come:
\begin{equation}
\underset
{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\longrightarrow
x,\,\,\,\,\forall x\in\mathbb{R}}{f:\mathbb{R}\rightarrow\mathbb{R}},
\end{equation}
che in tal caso si dice "applicazione identica su .
La (\ref{eq: appl_id_x}) è una biiezione, giacchè è manifestamente suriettiva e iniettiva.
Esempio 2
Consideriamo l'applicazione:
\begin{equation}
\underset{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,k\longrightarrow
-k,\,\,\,\,\forall k\in\mathbb{Z}}{f:\mathbb{Z}\rightarrow\mathbb{Z}%
},\label{eq: f_rel_rel}%
\end{equation}
cioè la legge che a ogni intero relativo , associa il suo opposto.
Risulta:
Cioè è suriettiva. Inoltre:
da cui l'iniettività di . Ne concludiamo che l'applicazione (\ref{eq: f_rel_rel}) è biiettiva.
Esempio 3
Consideriamo l'applicazione:
\begin{equation}
\underset{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\longrightarrow
2n+1,\,\,\,\,\forall n\in\mathbb{N}}{f:\mathbb{N}\rightarrow\mathbb{N}}%
\end{equation}
Risulta , giacchè è l'insieme dei numeri dispari. Quindi non è suriettiva.
Cioè è iniettiva.
Esempio 4
Consideriamo l'applicazione:
\begin{equation}
\underset{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\longrightarrow
x^{2},\,\,\,\,\forall x\in\mathbb{R}}{f:\mathbb{R}\rightarrow\mathbb{R}}%
\end{equation}
Risulta:
per cui non è iniettiva. Inoltre , onde non è suriettiva.