Spazi di Hilbert. Prodotto hermitiano e metrica
mercoledì, Marzo 10th, 2021
Sia H uno spazio di Hilbert.
Definizione
Comunque prendiamo f,g appartenenti ad H, chiamiamo distanza tra f e g, il numero reale:

Tale definizione è ben posta in quanto sono soddisfatti gli assiomi che conferiscono alla funzione ρ(f,g) la natura di distanza. Infatti, rammentando le proprietà della norma si ha:

Ne segue che il prodotto hermitiano induce una metrica in H

In altri termini, un qualunque spazio di Hilbert è uno spazio metrico. Ricordiamo incidentalmente, che in topologia una metrica può essere introdotta indipendentemente da un prodotto hermitiano. Di contro, negli spazi di Hilbert la metrica è indotta dal prodotto hermitiano. Alla stessa maniera, in uno spazio euclideo è il prodotto scalare che determina la metrica.
(altro…)







Congettura di Riemann
Trasformata discreta di Fourier
Trasformata di Fourier nel senso delle distribuzioni
Trasformata di Fourier
Infinitesimi ed infiniti
Limiti notevoli
Punti di discontinuità
Misura di Peano Jordan
Eserciziario sugli integrali
Differenziabilità
Differenziabilità (2)
Esercizi sui limiti
Appunti sulle derivate
Studio della funzione
Esercizi sugli integrali indefiniti
Algebra lineare
Analisi Matematica 2
Analisi funzionale
Entanglement quantistico
Spazio complesso
Biliardo di Novikov
Intro alla Meccanica quantistica
Entanglement Quantistico
