Cioè il grafico di tale funzione è l'unione della semiretta y=1 di origine (0,1) e del semiasse negativo x privato dell'origine. e si proietta sull'asse x in X=R e sull'asse y in θ(R)={0,1}, come mostrato in figura:
La funzione gradino unitario si generalizza nel seguente modo. Assegnato x0 in R definiamo:
Il grafico è
essendo
Ne concludiamo che il grafico della funzione unitstep generalizzata è l'unione della semiretta y=1 di origine il punto (x0,1) e della semiretta y=0 (con x < x 0) di origine il punto (x0,0) e privata di tale punto, come illustrato in figura:
Funzione signum
È così definita:
Esplicitando:
Quindi
Da tale equazione possiamo dedurre l'origine del nome dato alla funzione signum, dove "signum" sta per "segno". Infatti, tale funzione agisce alla stregua di un operatore, il quale applicato a un numero reale x restituisce +1 se x > 0, 0, se x=0 e -1 se x < 0. Utilizzando la terminologia informatica, sgnx restituisce gli stati logici +1,0,-1 che definiscono il segno del numero reale x. In altri termini, la funzione signum esegue un'estrazione del segno di un qualunque x preso in R. (altro…)