[¯|¯] Funzione irrazionale. Comportamento agli estremi del campo di esistenza

venerdì, Gennaio 13th, 2017

limiti,funzioni irrazionali,singolarità,discontinuità

Fig 1


Esercizio
Studiare il comportamento della funzione illustrata in fig. 1, agli estremi del suo campo di esistenza.


Soluzione
La funzione è definita per tutti e soli i valori della variabile indipendente x tali che

limiti,funzioni irrazionali,singolarità,discontinuità

cioè
limiti,funzioni irrazionali,singolarità,discontinuità

onde gli estremi del campo di esistenza sono x=1/2 e x->±oo. Iniziamo con il comportamento all'infinito, calcolando dapprima:

limiti,funzioni irrazionali,singolarità,discontinuità

onde

limiti,funzioni irrazionali,singolarità,discontinuità

(altro…)




Un teorema sulla discontinuità delle derivate

mercoledì, Aprile 27th, 2016

Nello studio della funzione la monotonia (intervalli di crescenza e decrescenza) viene stabilita in base al segno della derivata, come anche la ricerca dei punti di estremo relativi.
(altro…)