Fig. Transizione nello spazio delle configurazioni di un oscillatore armonico ideale, dalla condizione di battimento (frequenza della forza esterna prossima alla frequenza propria) alla condizione di risonanza.
Fig. Orbita di un oscillatore armonico di pulsazione ω0=0.6 rad/s. sottoposto a una forza esterna di pulsazione Ω=0.29 rad/s.
L'evoluzione dinamica di un sistema meccanico composto da un punto materiale che si muove lungo una retta (asse x) può essere studiata in due paradigmi diversi:
Evoluzione nel dominio del tempo.
Evoluzione nel dominio delle configurazioni.
Nel primo paradigma, una volta determinata l'equazione oraria x=x(t), e quindi la derivata rispetto al tempo di x(t), si traccia il grafico delle funzioni x(t) e della derivata prima.
Nel secondo approccio, invece, l'evoluzione dinamica viene rappresentata in uno spazio astratto 2-dimensionale denominato spazio delle configurazioni. Per poter definire tale ente geometrico, iniziamo con l'osservare che l'equazione differenziale del moto derivante dal secondo principio della dinamica si scrive:
dove
essendo m la massa del punto materiale e F la forza applicata. L'equazione differenziale appena scritta è del secondo ordine ed è equivalente a un sistema di equazioni differenziali del primo ordine. Infatti, se in tale equazione differenziale eseguiamo il cambio di variabili:
si ha:
Quindi
che è un sistema di equazioni differenziali del primo ordine nelle funzioni incognite ξ(t),η(t). La totalità delle coppie ordinate
che soddisfano il sistema di equazioni differenziali appartengono allo spazio euclideo R² cartesianamente rappresentabile da un sistema di assi coordinati x e v. Abbiamo così definito lo spazio delle configurazioni del sistema meccanico assegnato, la cui evoluzione dinamica è geometricamente rappresentata dal moto del punto (x,v) lungo una curva Γ che definisce la regione dello spazio delle configurazioni accessibile al sistema, ed è nota come orbita del sistema medesimo. Una rappresentazione parametrica di Γ è
ove la funzione x(t) è l'unica soluzione del problema di Cauchy:
La coppia ordinata
definisce lo stato del sistema meccanico. Il teorema di esistenza ed unicità delle soluzioni del predetto problema di Cauchy implica il determinismo fisico: lo stato meccanico a tutti i tempi è univocamente determinato dallo stato meccanico iniziale e dalla forza agente sul punto materiale. (altro…)