Somma costante di distanze tra un punto generico e i lati di un triangolo equilatero

Luglio 13th, 2021 | by Marcello Colozzo |

triangolo equilatero,lati,distanza
Fig. 2


Appunti ed esercizi di Geometria elaborati dell'ing. Giorgio Bertucelli.

Dimostrare che in un triangolo equilatero, da un punto generico P interno al triangolo, la somma delle distanze da P ai lati del triangolo è costante. Dalla fig.:


vediamo


Soluzione
1° Metodo. Si consideri la fig. 1. I segmenti rossi PQ,PR,PS sono perpendicolari ai rispettivi lati BC,CA,AB. Il segmento EF è parallelo al segmento BC. Il segmento ET è parallelo al segmento PR. Il triangolo HEP è equilatero perché PH è parallelo ad AC e nel quale si ha


Il triangolo AEF è equilatero e nel quale si ha

Osserviamo che


cioè


e quindi

che è una costante nel triangolo ABC.

2° Metodo. Si consideri la fig.


Dividiamo il triangolo ABC in tre triangoli ABP,BCP,CAP, aventi le rispettive altezze PS,PQ,PR. L'area del predetto triangolo è


ma è anche la somma delle aree di ciascun triangolo:


ma poichè abbiamo AB=BC=CA scriveremo

da cui

No TweetBacks yet. (Be the first to Tweet this post)

Tags: , ,

Articoli correlati

Commenta l'esercizio