Curva sopraelevata (forze centrifughe)
Giugno 10th, 2020 | by Marcello Colozzo |Le forze centrifughe rappresentano l'inerzia di un corpo a cambiare direzione del moto. Consideriamo il caso particolare di un veicolo che abborda una curva: la forza centrifuga tende a spingere il veicolo all'esterno della curva medesima. D'altra parte rispetto a un sistema di riferimento inerziale, affinché si realizzi il moto su traiettoria curva è necessaria una forza centripeta orientata verso il centro istantaneo di curvatura. Tale forza è fornita dal vincolo, ossia dalla strada. Se quest'ultima è orizzontale, la predetta forza è generata dall'attrito tra i pneumatici e la superficie stradale. In figura riportiamo il diagramma delle forze agenti sul veicolo, approssimando la curva ad un arco di circonferenza di raggio r.
Analizziamo le singole forze:
- P=mg è ovviamente la forza peso del veicolo di massa m.
- RN è la reazione normale del vincolo:
- RT è la componente tangenziale della reazione vincolare (attrito).
Se v è la velocità scalare del veicolo (supposta costante), la condizione di non sbandamento è
D'altra parte, il valore di RT è fissato dal coefficiente di attrito, per cui la condizione di sbandamento è verificata per velocità non troppo elevate. In quest'ultimo caso occorre sopraelevare la curva. Per semplicità consideriamo nullo il coefficiente di attrito, per cui abbiamo un diagramma delle forze del tipo di quello riportato in fig. 1, in cui Fc è la forza centripeta:
Dal secondo principio della dinamica, otteniamo la seguente equazione vettoriale
che proiettata sugli assi coordinati x,y restituisce:
da cui ricaviamo l'angolo di sopraelevazione
Tags: coefficiente d'attrito, curva sopraelevata, forze centrifughe
Articoli correlati