[¯|¯] Il lato oscuro dello sviluppo di Hadamard
domenica, Settembre 1st, 2019
Per quanto stabilito nel numero precedente, lo sviluppo di Hadamard non fornisce alcun risultato utile circa la congettura di Riemann. Anzi, sembra suggerirne una negazione giacché ci si aspetta una parte reale degli zeri non banali variabile nell'intervallo aperto (0,1) e non identicamente pari a 1/2. In ogni caso, rimangono alcuni lati oscuri riguardo la convergenza del prodotto infinito in cui la funzione ξ è fattorizzata. Stiamo parlando dei singoli fattori in cui la variabile z non dipende dall'indice della produttoria. Per essere più specifici, il singolo fattore contiene la funzione -z moltiplicata per il reciproco del k-esimo zero non banale. Imponendo la convergenza assoluta è necessario lavorare sulle corrispodenti serie di funzioni, che per quanto precede non sono tali nel senso che si riducono al prodotto di -z per una serie numerica (e quindi, nono di funzioni) i cui termini sono i reciproci degli zeri non banali.
(altro…)



Congettura di Riemann
Trasformata discreta di Fourier
Trasformata di Fourier nel senso delle distribuzioni
Trasformata di Fourier
Infinitesimi ed infiniti
Limiti notevoli
Punti di discontinuità
Misura di Peano Jordan
Eserciziario sugli integrali
Differenziabilità
Differenziabilità (2)
Esercizi sui limiti
Appunti sulle derivate
Studio della funzione
Esercizi sugli integrali indefiniti
Algebra lineare
Analisi Matematica 2
Analisi funzionale
Entanglement quantistico
Spazio complesso
Biliardo di Novikov
Intro alla Meccanica quantistica
Entanglement Quantistico
