[¯|¯] Autovelox portatile (ad ultrasuoni)
mercoledì, Luglio 18th, 2018
Un trasmettitore T emette ultrasuoni sotto forma di pacchetti d'onda piana longitudinale. Assumiamo come sistema di riferimento una terna di assi cartesiani con origine in T e asse x orientato verso un bersaglio B, che per ora consideriamo fermo rispetto al predetto sistema di riferimento, come illustrato nella seguente figura:

La funzione d'onda di singolo pacchetto può essere scritta come

dove k è il vettore di propagazione:

essendo λ la lunghezza d'onda e n il versore della direzione orientata di propagazione. Per come abbiamo scelto il sistema di riferimento:

onde

La grandezza ω(k) è, invece, la pulsazione in funzione del numero d'onde k=|k|. Come è noto dalla teoria della propagazione ondosa, tale funzione descrive il fenomeno della dispersione. Più specificatamente, se ω(k) è una costante o al più lineare in k, non c'è dispersione e il pacchetto conserva il profilo iniziale. Per semplicità consideriamo il caso particolare:

Cioè la dipendenza temporale della ψ(x,t) è un'oscillazione sinusoidale di durata τ. In particolare nel punto (0,0,0) i.e. nel punto di trasmissione:

Per una frequenza ν0=21kHz

Per la durata di singolo impulso assumiamo τ=3.88×10^-3 s . L'andamento di f(t) è plottato in figura:

Calcolando la trasformata di Fourier della funzione f(t) otteniamo

Come è noto dall'Analisi di Fourier, tale funzione esprime la densità spettrale della f(t), ovvero definisce l'ampiezza delle componenti monocromatica di pulsazione compresa tra ω e ω+dω. In figura riportiamo la densità spettrale con i dati numerici visti sopra.

La "larghezza" della g(ω) è controllata dalla durata τ del segnale. Più precisamente, al crescere di τ, g(ω) diviene più piccata intorno a ω0, per cui il contributo proveniente dalle componenti di Fourier con ω diverso da ω0 diviene progressivamente più trascurabile. Viceversa, al diminuire progressivo di t vediamo che g(ω) tende ad "allargarsi". Ciò significa che le componenti di Fourier di pulsazione ω=ω0 assumono un'ampiezza non trascurabile. In generale, la larghezza di g(ω) è l'ampiezza dell'intervallo

(altro…)



Congettura di Riemann
Trasformata discreta di Fourier
Trasformata di Fourier nel senso delle distribuzioni
Trasformata di Fourier
Infinitesimi ed infiniti
Limiti notevoli
Punti di discontinuità
Misura di Peano Jordan
Eserciziario sugli integrali
Differenziabilità
Differenziabilità (2)
Esercizi sui limiti
Appunti sulle derivate
Studio della funzione
Esercizi sugli integrali indefiniti
Algebra lineare
Analisi Matematica 2
Analisi funzionale
Entanglement quantistico
Spazio complesso
Biliardo di Novikov
Intro alla Meccanica quantistica
Entanglement Quantistico
