Caduta libera di una pallina (cinematica del punto materiale)
Ottobre 25th, 2016 | by Marcello Colozzo |
Un matematico tenta di determinare in funzione del tempo la coordinata y di una pallina che si muove verticalmente dopo che le è stata impressa una velocità iniziale v₀ verso l'alto, misurando il tempo di volo T (cioè il tempo di andata e ritorno) e il tempo tmax in cui la pallina nella fase ascendente raggiunge la massima quota per poi invertire il moto. Il matematico osserva che per T∈(T₀-τε,T₀+τε) dove T₀ è un valore assegnato del tempo di volo e τε≪T₀, la velocità iniziale verifica la seguente limitazione:
|v₀-((gT₀)/2)|<ε (1)
essendo g=9.81m /s⁻² l'accelerazione di gravità. Facendo la ragionevole ipotesi che T sia una funzione continua di v₀, dimostrare a partire dalla (1) che
T=(2v₀)/g
Tenendo conto di tale risultato e che la derivata di y(t) si annulla in T/2 è possibile determinare l'espressione analitica della funzione y(t) (cioè l'equazione oraria del moto)?
Scarica la soluzione in formato pdf
No TweetBacks yet. (Be the first to Tweet this post)
Articoli correlati



Congettura di Riemann
Trasformata discreta di Fourier
Trasformata di Fourier nel senso delle distribuzioni
Trasformata di Fourier
Infinitesimi ed infiniti
Limiti notevoli
Punti di discontinuità
Misura di Peano Jordan
Eserciziario sugli integrali
Differenziabilità
Differenziabilità (2)
Esercizi sui limiti
Appunti sulle derivate
Studio della funzione
Esercizi sugli integrali indefiniti
Algebra lineare
Analisi Matematica 2
Analisi funzionale
Entanglement quantistico
Spazio complesso
Biliardo di Novikov
Intro alla Meccanica quantistica
Entanglement Quantistico
