[¯|¯] Esercizio 1331. Combinazione lineare di vettori
Settembre 1st, 2009 | by extrabyte |
Ricerca rapida: per chi non ha tempo per navigare nel sito, segnaliamo i seguenti link:
- Campo di esistenza
- Calcolo di limiti - parte 1
- Calcolo di limiti - parte 2
- Calcolo di derivate - parte 1
- Calcolo di derivate - parte 2
- App. geometriche della derivata
- »PUNTI DI FLESSO
- Estremi relativi ed assoluti di una f(x)
- Studio della funzione - parte 1
- Studio della funzione - parte 2
- Studio della funzione - parte 3
- FUNZIONI DA ESAME - parte 1
- FUNZIONI DA ESAME - parte 2
- 22 esercizi svolti sugli integrali indefiniti
- INTEGRALI DI FUNZIONI RAZIONALI
- INTEGRALI DI FUNZIONI IRRAZIONALI
- Integrali di funzioni razionali ed irrazionali
- INTEGRALI DI FUNZIONI TRIGONOMETRICHE
- INTEGRALI DI FUNZIONI IPERBOLICHE
- » INTEGRALI DI FUNZIONI VARIE
- » INTEGRALI GENERALIZZATI E IMPROPRI
- 9 esercizi svolti sulle matrici
Dopo aver verificato che il sistema di vettori:

è linearmente indipendente, esprimere il vettore v = (2, 3,−4) come combinazione lineare di tali vettroi

Scarica l'esercizio in formato PDFNo TweetBacks yet. (Be the first to Tweet this post)
Tags: Calcolo vettoriale, dipendenza lineare, vettori linearmente indipendenti
Articoli correlati


Congettura di Riemann
Trasformata discreta di Fourier
Trasformata di Fourier nel senso delle distribuzioni
Trasformata di Fourier
Infinitesimi ed infiniti
Limiti notevoli
Punti di discontinuità
Misura di Peano Jordan
Eserciziario sugli integrali
Differenziabilità
Differenziabilità (2)
Esercizi sui limiti
Appunti sulle derivate
Studio della funzione
Esercizi sugli integrali indefiniti
Algebra lineare
Analisi Matematica 2
Analisi funzionale
Entanglement quantistico
Spazio complesso
Biliardo di Novikov
Intro alla Meccanica quantistica
Entanglement Quantistico
