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2 A REMARKABLE INTEGRAL REPRESENTATION

1 Introduction

The Dirichlet series
∑+∞

n=1n
−z converges for Re z > 1, and the sum is the Riemann zeta

function:

ζ (z) =
+∞∑

n=1

1

nz
, Re z > 1 (1)

Another notable series that can be expressed through the zeta function is:

+∞∑

n=1

(−1)n−1

nz
=

(
1− 21−z

)
Γ (z) ζ (z) (2)

which converges for Re z > 0.
Since the series are not very “handy” it is preferable to work with integral representations.

2 A remarkable integral representation

In Quantum Statistical Mechanics the following generalized integrals which are not elemen-
tary expressible often appear

∫ +∞

0

tx−1dt

et ± 1
(3)

having:

∫ +∞

0

tx−1dt

et + 1
=

(
1− 21−x

)
Γ (x) ζ (x) , ∀x ∈ (0,+∞) (4)

∫ +∞

0

tx−1dt

et − 1
= Γ (x) ζ (x) , ∀x ∈ (1,+∞)

where Γ (x) and ζ (x) are the Eulerian gamma function and the Riemann zeta function,
respectively. Through an elementary change of variable, the first integral becomes

∫ +∞

−∞

ext

eet + 1
dt (5)

We define

f (x, t) =
ext

eet + 1
,

{
x ∈ (0, 1) parameter
t ∈ (−∞,+∞) independent variable

(6)

Taking into account the first of (4):

f̂ (x)
def
=

∫ +∞

−∞

f (x, t) dt =
(
1− 21−x

)
Γ (x) ζ (x) , ∀x ∈ (0,+∞) , (7)

Proceeding by extension to the complex field, we can define the following function:

f̂ (z) ≡ f̂ (x+ iy) =

∫ +∞

−∞

f (x, t) eiytdt =
(
1− 21−z

)
Γ (z) ζ (z) , Re (z) > 0 (8)
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3 THE ANALYTIC CHARACTER OF ζ (Z), THE FUNCTIONAL EQUATION AND

THE NON-TRIVIAL ZEROS

3 The analytic character of ζ (z), the functional equa-

tion and the non-trivial zeros

Riemann found the analytic extension (or holomorphic extension) of the sum of the Dirichlet
series (1) over all C except the point z = 1, which turns out to be a simple pole with residue
1.

The aforesaid analytical extension is represented by the following functional equation [1]:

π−
z

2Γ
(z

2

)

ζ (z) = π
z−1

2 Γ

(
1− z

2

)

ζ (1− z) (9)

The non-trivial zeros of ζ (z) fall in the critical strip [1]-[2] of the complex plane defined
by

A = {z ∈ C | 0 < Re z < 1, −∞ < Im z < +∞} (10)

Proposition 1
∣
∣
(
1− 21−z

)
Γ (z)

∣
∣ > 0, ∀z ∈ A (11)

z0 ∈ A | ζ (z0) = 0 ⇐⇒ ζ (1− z0) = 0 (12)

Proof. The inequality (11) derives from the fact that the gamma function has no zeros [3],
while 1− 21−z is manifestly zero-free in A.

(12) is a consequence of the functional equation (9).
From the proposition just proved it follows f (z) and ζ (z) have the same (non-trivial)

zeros. Dalla (12) segue che gli zeri sono simmetrici rispetto alla retta Re s = 1/2. Further-
more, it can be observed that ζ (z∗) = ζ (z)∗ where * denotes the complex conjugate. This
implies that the nontrivial zeros are symmetric about the real axis (see fig. 1).

The line Re s = 1/2 is called the critical line. Hardy [1]-[2] proved that infinitely many
zeros fall on this line.

Figure 1: Symmetry of the distribution of non trivial zeros.
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4 RIEMANN HYPOTHESIS

4 Riemann Hypothesis

4.1 Fourier Transform

From (8) we see that for a given x ∈ (0, 1) the complex function f (x+ iy) is the Fourier
transform of (6).

Conjecture 2 (Riemann Hypothesis)
The non-trivial zeros of the function

f̂ (x+ iy) =

∫ +∞

−∞

f (x, t) eiytdt (13)

have real part x = 1/2.

Let us first study the behavior of the function f (x, t) (given by (6)) which for each value
of the parameter x ∈ (0, 1) is defined in (−∞,+∞).

Sign and intersections with the axes

It turns out g (x, t) > 0, ∀t ∈ (−∞,+∞) for which the graph of f lies in the semi-plane
of the positive ordinates. It does not intersect the abscissa axis, while it does intersect the
ordinate axis at

(
0, (e+ 1)−1).

Behavior at extremes

After calculations:
lim

t→+∞
f (x, t) = 0+, ∀x ∈ (0, 1)

The order of infinitesimal:

lim
t→+∞

tαf (x, t) = 0+, ∀α > 0 (infinitesimal of infinitely large order) (14)

lim
t→−∞

f (x, t) =

{
1
2

−
, if x = 0

0+, if x > 0

Precisely:
lim

t→−∞
tαf (x > 0, t) = 0+, ∀α > 0 (15)

Conclusion: for |t| → +∞ the function f (x > 0, t) is an infinitesimal of order infinitely large,
provided that it is x > 0.

First derivative

f ′ (x, t) ≡
∂

∂t
f (x, t) =

ext
[
x
(
ee

t

+ 1
)
− et+et

]

(eet + 1)
2

For x = 0

f ′ (0, t) = −
et+et

(eet + 1)
2 < 0, ∀t ∈ (−∞,+∞)

so the function is strictly decreasing.
For x > 0

f ′ (x, t) = 0 ⇐⇒ x
(

ee
t

+ 1
)

− et+et = 0 (16)

which is solved numerically. After calculations, the root of the (16) è

0 < x < 1 =⇒ t∗ (x) ∈ [∼ −6.32, 0.2]
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4 RIEMANN HYPOTHESIS

Some values for assigned x ∈ (0, 1):

t∗

(
1

5

)

≃ −1.07

t∗

(
1

4

)

≃ −0.88

t∗

(
1

2

)

≃ −0.30

t∗

(
2

3

)

≃ −0.07

t∗

(
3

4

)

≃ 0.02

The sign is

−∞ < t < t∗ (x) =⇒ f ′ (x, t) > 0

t∗ (x) < t < +∞ =⇒ f ′ (x, t) < 0

Hence the function is strictly increasing in (−∞, t∗ (x)) is strictly decreasing in (t∗ (x) ,+∞).
So t∗ (x) is a point of relative maximum for

Second derivative

f ′′ (x, t) =
ext

[

e2(e
t+t) − ee

t+2t + x2
(
1 + ee

t
)2

− (2x+ 1)
(
et+et + e2e

t+t
)]

(1 + eet)
3 (17)

For x = 0

f ′′ (0, t) =
e2(e

t+t) − ee
t+2t −

(
et+et + e2e

t+t
)

(1 + eet)
3

which has a zero in t′∗ (x = 0) ≃ 0.43. The sign is

−∞ < t < t′∗ (x = 0) =⇒ f ′′ (0, t) < 0

t′∗ (x = 0) < t < +∞ =⇒ f ′′ (0, t) > 0

It follows that the graph of f (0, t) is convex in (−∞, t′∗ (x = 0)) and concave in (t′∗ (x = 0) ,+∞).
So (0.43, 0.18) is an inflection point with an oblique tangent. In fig. 2 we report the graph
of f (0, t).

For x > 0 we perform a qualitative analysis. The parameter x controls the slope of the
graph of f (t) in (−∞, 0) since

∂

∂t
ext = xext

For t ∈ (0,+∞) the slope is controlled by ee
t

in denominator. This implies that the effects
of the parameter x are felt for t ∈ (−∞, 0), while in (0,+∞) the trend is practically
independent of this parameter. Fig. 3 plots f (x, t) for increasing values of the parameter x
starting from x = 0.

We rewrite (7)

F (x) =

∫ +∞

−∞

f (x, t) dt (18)
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4 RIEMANN HYPOTHESIS
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Figure 2: Trend of f (0, t) .

which Mathematica calculates through

F (x) =
(
1− 21−x

)
Γ (x) ζ (x)

As previously seen, for x > 0 the integrand function is for t → ±∞ an infinitesimal of
infinitely large order; so the integral converges. More precisely:

F (x) =

∫ 0

−∞

ext

eet + 1
dt+

∫ +∞

0

ext

eet + 1
dt

︸ ︷︷ ︸

converges ∀x∈(0,1)

For x = 0

f (0, t) =
1

eet + 1
−→
t→−∞

1

2
=⇒

∫ 0

−∞

dt

eet + 1
= +∞ =⇒ lim

x→0+
F (x) = +∞

For x > 0 the trend in (−∞, 0) is dominated by ext

ext

eet + 1
−→
t→−∞

ext

so the integral converges. As x increases in (−∞, 0) the slope increases, and this favors the
convergence of the integral1, simultaneously decreases the area of the base trapezoid (−∞, 0)
and therefore the value of F (x). This shows that G (x) is strictly decreasing, as confirmed
by the graph fig. 4 obtained with Mathematica.

1The parameter x therefore controls the speed of convergence of the integral in the interval (−∞, 0).
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4 RIEMANN HYPOTHESIS
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Figure 3: Trend of f (x, t) for different values of x. Curve in green: x = 0. The flattest curve
towards the ordinate axis is for x = 1.
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Figure 4: Trend of F (x).
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4 RIEMANN HYPOTHESIS

4.2 Zeros of the Fourier Transform

We redefine the variables x, y in α, ω, and then rewrite (13):

I (α, ω) =

∫ +∞

−∞

eαt

eet + 1
eiωtdt (19)

It follows

I (α, ω) = I− (α, ω) + I+ (α, ω) (20)

I− (α, ω)
def
=

∫ 0

−∞

eαt

eet + 1
eiωtdt

I+ (α, ω)
def
=

∫ +∞

0

eαt

eet + 1
eiωtdt

Even if we are interested in α ∈ (0, 1), it results:

|I− (α, ω)| =

∫ 0

−∞

eαt

eet + 1
dt = +∞, ∀α ∈ (−∞, 0] ;

∣
∣I(−)

α (ω)
∣
∣ < +∞, ∀α ∈ (0,+∞)

|I+ (α, ω)| < +∞, ∀α ∈ (−∞,+∞)

Conclusion 3 The variable α conditions the convergence of I− (α, ω) but not that of I+ (α, ω).

The integral (19) can be seen as:

• complex function of the real variables (α, ω);

• complex function of the complex variable α + iω;

• family of functions of ω, with one real parameter α.

Due to the symmetry property established in the number 3, we can limit the search for
zeros in the region:

A1 =

{

(α, ω) ∈ R
2 | 0 < α <

1

2
, 0 ≤ ω < +∞

}

(21)

It follows

I (α, ω) = 0 ⇐⇒ I− (α, ω) = −I+ (α, ω) =⇒ |I− (α, ω)| = |I+ (α, ω)| (22)

We study the behavior of the individual modules for α ∈ (0, 1).

|I− (α, ω)| =

∣
∣
∣
∣

∫ 0

−∞

eαt

eet + 1
eiωtdt

∣
∣
∣
∣
≤

∫ 0

−∞

∣
∣
∣
∣

eαt

eet + 1
eiωt

∣
∣
∣
∣
dt =

∫ 0

−∞

eαt

eet + 1
dt,

i.e.
|I− (α, ω)| ≤ ψ− (α) (23)

where

ψ− (α)
def
=

∫ 0

−∞

eαt

eet + 1
dt (24)
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4 RIEMANN HYPOTHESIS

We have

sup
R

(
1

eet + 1

)

=
1

2
=⇒

∫ 0

−∞

eαt

eet + 1
dt <

1

2

∫ 0

−∞

eαtdt =
1

2α

So

|I− (α, ω)| <
1

2α
, ∀α ∈ (0, 1) (25)

Incidentally

lim
α→0+

|I− (α, ω)| = lim
α→0+

1

2α
= +∞ (26)

From (25): for α → 0+ and ∀ω ∈ R, the function
∣
∣
∣I

(−)
α (ω)

∣
∣
∣ is an infinitesimal of order β < 1

(assuming α−1 as the reference infinitesimal). Furthermore:

∀M > 0, ∃∆M (ω) > 0 | 0 < α < ∆M (ω) =⇒ |I− (α, ω)| > M (27)

Let’s consider
δM = inf

R

{∆M (ω)} > 0 (28)

∀M > 0, ∃δM > 0 | 0 < α < δM =⇒ |I− (α, ω)| > M, ∀ω ∈ R (29)

The function (24) is monotonically decreasing in (0, 1). This can be deduced from the
trend of the integrand function for different values of α ∈ (0, 1) (fig. 5).

-4 -3 -2 -1

1

2

1

e+1

Figure 5: Trend of εαt

ee
t
+1

for α = 0, 1
4
, 1
2
, 3
4
, 1.

Proceeding in a similar way for |I+ (α, ω)|

|I+ (α, ω)| ≤ ψ+ (α) (30)

where

ψ+ (α)
def
=

∫ +∞

0

eαt

eet + 1
dt (31)

The functions ψ± (α) are not elementarily expressible, except for α = 1. Precisely:

ψ− (1) =

∫ 0

−∞

dt

eet + 1
= 1 + ln 2− ln (1 + e) (32)

ψ+ (1) = ln (1 + e)− 1 < ψ− (1)
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4 RIEMANN HYPOTHESIS

It follows:

min
(0,1)

ψ− (α) = ψ− (1) = 1 + ln 2− ln (1 + e) , sup
(0,1)

ψ− (α) = +∞

In fig. 6 the trend of ψ− (α).

Α

1

2

3

4

5

6

Ψ-HΑL

+¥

Figure 6: Trend of ψ− (α) obtained numerically.

It is easy to convince oneself that ψ+ (α) is monotonically increasing in (0, 1). So:

min
(0,1)

ψ+ (α) = ψ+ (0) =

∫ +∞

0

dt

eet + 1
≃ 0.180628 (33)

max
(0,1)

ψ+ (α) = ψ+ (1) = ln (1 + e)− 1

The graph is in fig. 7, while in fig. 8 single function graphs are compared.
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Figure 7: Trend of ψ+ (α) obtained numerically.

From this analysis it follows immediately:

α ∈ (0, 1) =⇒ ψ− (α) > ψ+ (α) (34)

It can manifestly happen:

|I− (α0, ω0)| = |I+ (α0, ω0)| ≤ ψ+ (α0) < ψ− (α0) (35)
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4 RIEMANN HYPOTHESIS
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Figure 8: Trend of ψ± (α) obtained numerically.

compatibly with (34). In other words, (34) does not rule out the presence of zeros in A1. It
follows that a sufficient condition for the non-existence of zeros in A1 is

|I− (α, ω)| > |I+ (α, ω)| , ∀ (α, ω) ∈ A1 (36)

so that the right chains of inequalities are respectively:

|I+ (α, ω)| ≤ ψ+ (α0) < |I− (α, ω)| ≤ ψ− (α0) (37)

|I+ (α, ω)| < |I− (α, ω)| ≤ ψ+ (α0) < ψ− (α0)

From (29) taking M∗ > ψ+

(
1
2

)
, we have

∃δM∗
> 0 | 0 < α < δM =⇒ |I− (α, ω)| > M∗ > ψ+

(
1

2

)

> ψ+ (α) , ∀α ∈

(

0,
1

2

)

, ∀ω ∈ R

per cui non esistono zeri in (0, δM∗
) e per le note proprietà di simmetria, in (1− δM∗

, 1). Ne
segue che la striscia critica effettiva è (fig. 9)

Aeff = {z ∈ C | δM∗
< Re z < 1− δM∗

, −∞ < Im z < +∞} (38)

1
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Α

Ψ-HΑL
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Figure 9: The effective critical strip.
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