Matematica Open Source - http://www.extrabyte.info Applied Mathematics Papers - 2023

Matematica Open Source

$$
\frac{d}{d x} f(x) \sum_{k=0}^{+\infty} a_{k} \int f(x) d x \oint_{\Gamma}(X d x+Y d y+Z d z)
$$

Riemann Hypothesis: the effective critical strip

Marcello Colozzo

Contents

1 Introduction 2
2 A remarkable integral representation 2
3 The analytic character of $\zeta(z)$, the functional equation and the non-trivial zeros 3
4 Riemann Hypothesis 4
4.1 Fourier Transform 4
4.2 Zeros of the Fourier Transform 8
Bibliografia 12

1 Introduction

The Dirichlet series $\sum_{n=1}^{+\infty} n^{-z}$ converges for $\operatorname{Re} z>1$, and the sum is the Riemann zeta function:

$$
\begin{equation*}
\zeta(z)=\sum_{n=1}^{+\infty} \frac{1}{n^{z}}, \quad \operatorname{Re} z>1 \tag{1}
\end{equation*}
$$

Another notable series that can be expressed through the zeta function is:

$$
\begin{equation*}
\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{z}}=\left(1-2^{1-z}\right) \Gamma(z) \zeta(z) \tag{2}
\end{equation*}
$$

which converges for $\operatorname{Re} z>0$.
Since the series are not very "handy" it is preferable to work with integral representations.

2 A remarkable integral representation

In Quantum Statistical Mechanics the following generalized integrals which are not elementary expressible often appear

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{t^{x-1} d t}{e^{t} \pm 1} \tag{3}
\end{equation*}
$$

having:

$$
\begin{align*}
\int_{0}^{+\infty} \frac{t^{x-1} d t}{e^{t}+1} & =\left(1-2^{1-x}\right) \Gamma(x) \zeta(x), \quad \forall x \in(0,+\infty) \tag{4}\\
\int_{0}^{+\infty} \frac{t^{x-1} d t}{e^{t}-1} & =\Gamma(x) \zeta(x), \quad \forall x \in(1,+\infty)
\end{align*}
$$

where $\Gamma(x)$ and $\zeta(x)$ are the Eulerian gamma function and the Riemann zeta function, respectively. Through an elementary change of variable, the first integral becomes

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} d t \tag{5}
\end{equation*}
$$

We define

$$
f(x, t)=\frac{e^{x t}}{e^{e^{t}}+1}, \quad\left\{\begin{array}{l}
x \in(0,1) \text { parameter } \tag{6}\\
t \in(-\infty,+\infty) \text { independent variable }
\end{array}\right.
$$

Taking into account the first of (4):

$$
\begin{equation*}
\hat{f}(x) \stackrel{\text { def }}{=} \int_{-\infty}^{+\infty} f(x, t) d t=\left(1-2^{1-x}\right) \Gamma(x) \zeta(x), \quad \forall x \in(0,+\infty) \tag{7}
\end{equation*}
$$

Proceeding by extension to the complex field, we can define the following function:

$$
\begin{equation*}
\hat{f}(z) \equiv \hat{f}(x+i y)=\int_{-\infty}^{+\infty} f(x, t) e^{i y t} d t=\left(1-2^{1-z}\right) \Gamma(z) \zeta(z), \quad \operatorname{Re}(z)>0 \tag{8}
\end{equation*}
$$

3 The analytic character of $\zeta(z)$, the functional equation and the non-trivial zeros

Riemann found the analytic extension (or holomorphic extension) of the sum of the Dirichlet series (1) over all \mathbb{C} except the point $z=1$, which turns out to be a simple pole with residue 1.

The aforesaid analytical extension is represented by the following functional equation [1]:

$$
\begin{equation*}
\pi^{-\frac{z}{2}} \Gamma\left(\frac{z}{2}\right) \zeta(z)=\pi^{\frac{z-1}{2}} \Gamma\left(\frac{1-z}{2}\right) \zeta(1-z) \tag{9}
\end{equation*}
$$

The non-trivial zeros of $\zeta(z)$ fall in the critical strip [1]-[2] of the complex plane defined by

$$
\begin{equation*}
A=\{z \in \mathbb{C} \mid 0<\operatorname{Re} z<1, \quad-\infty<\operatorname{Im} z<+\infty\} \tag{10}
\end{equation*}
$$

Proposition 1

$$
\begin{gather*}
\left|\left(1-2^{1-z}\right) \Gamma(z)\right|>0, \quad \forall z \in A \tag{11}\\
z_{0} \in A \mid \zeta\left(z_{0}\right)=0 \Longleftrightarrow \zeta\left(1-z_{0}\right)=0 \tag{12}
\end{gather*}
$$

Proof. The inequality (11) derives from the fact that the gamma function has no zeros [3], while $1-2^{1-z}$ is manifestly zero-free in A.
(12) is a consequence of the functional equation (9).

From the proposition just proved it follows $f(z)$ and $\zeta(z)$ have the same (non-trivial) zeros. Dalla (12) segue che gli zeri sono simmetrici rispetto alla retta $\operatorname{Re} s=1 / 2$. Furthermore, it can be observed that $\zeta\left(z^{*}\right)=\zeta(z)^{*}$ where * denotes the complex conjugate. This implies that the nontrivial zeros are symmetric about the real axis (see fig. 1).

The line $\operatorname{Re} s=1 / 2$ is called the critical line. Hardy [1]-[2] proved that infinitely many zeros fall on this line.

Figure 1: Symmetry of the distribution of non trivial zeros.

4 Riemann Hypothesis

4.1 Fourier Transform

From (8) we see that for a given $x \in(0,1)$ the complex function $f(x+i y)$ is the Fourier transform of (6).

Conjecture 2 (Riemann Hypothesis)

The non-trivial zeros of the function

$$
\begin{equation*}
\hat{f}(x+i y)=\int_{-\infty}^{+\infty} f(x, t) e^{i y t} d t \tag{13}
\end{equation*}
$$

have real part $x=1 / 2$.
Let us first study the behavior of the function $f(x, t)$ (given by (6)) which for each value of the parameter $x \in(0,1)$ is defined in $(-\infty,+\infty)$.

Sign and intersections with the axes

It turns out $g(x, t)>0, \forall t \in(-\infty,+\infty)$ for which the graph of f lies in the semi-plane of the positive ordinates. It does not intersect the abscissa axis, while it does intersect the ordinate axis at $\left(0,(e+1)^{-1}\right)$.

Behavior at extremes
After calculations:

$$
\lim _{t \rightarrow+\infty} f(x, t)=0^{+}, \quad \forall x \in(0,1)
$$

The order of infinitesimal:

$$
\begin{gather*}
\lim _{t \rightarrow+\infty} t^{\alpha} f(x, t)=0^{+}, \quad \forall \alpha>0 \quad \text { (infinitesimal of infinitely large order) } \tag{14}\\
\lim _{t \rightarrow-\infty} f(x, t)= \begin{cases}\frac{1^{-}}{2}, & \text { if } x=0 \\
0^{+}, & \text {if } x>0\end{cases}
\end{gather*}
$$

Precisely:

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} t^{\alpha} f(x>0, t)=0^{+}, \quad \forall \alpha>0 \tag{15}
\end{equation*}
$$

Conclusion: for $|t| \rightarrow+\infty$ the function $f(x>0, t)$ is an infinitesimal of order infinitely large, provided that it is $x>0$.

First derivative

$$
f^{\prime}(x, t) \equiv \frac{\partial}{\partial t} f(x, t)=\frac{e^{x t}\left[x\left(e^{e^{t}}+1\right)-e^{t+e^{t}}\right]}{\left(e^{e^{t}}+1\right)^{2}}
$$

For $x=0$

$$
f^{\prime}(0, t)=-\frac{e^{t+e^{t}}}{\left(e^{e^{t}}+1\right)^{2}}<0, \quad \forall t \in(-\infty,+\infty)
$$

so the function is strictly decreasing.
For $x>0$

$$
\begin{equation*}
f^{\prime}(x, t)=0 \Longleftrightarrow x\left(e^{e^{t}}+1\right)-e^{t+e^{t}}=0 \tag{16}
\end{equation*}
$$

which is solved numerically. After calculations, the root of the (16) è

$$
0<x<1 \Longrightarrow t_{*}(x) \in[\sim-6.32,0.2]
$$

Some values for assigned $x \in(0,1)$:

$$
\begin{aligned}
& t_{*}\left(\frac{1}{5}\right) \simeq-1.07 \\
& t_{*}\left(\frac{1}{4}\right) \simeq-0.88 \\
& t_{*}\left(\frac{1}{2}\right) \simeq-0.30 \\
& t_{*}\left(\frac{2}{3}\right) \simeq-0.07 \\
& t_{*}\left(\frac{3}{4}\right) \simeq 0.02
\end{aligned}
$$

The sign is

$$
\begin{aligned}
-\infty & <t<t_{*}(x) \Longrightarrow f^{\prime}(x, t)>0 \\
t_{*}(x) & <t<+\infty \Longrightarrow f^{\prime}(x, t)<0
\end{aligned}
$$

Hence the function is strictly increasing in $\left(-\infty, t_{*}(x)\right)$ is strictly decreasing in $\left(t_{*}(x),+\infty\right)$. So $t_{*}(x)$ is a point of relative maximum for

Second derivative

$$
\begin{equation*}
f^{\prime \prime}(x, t)=\frac{e^{x t}\left[e^{2\left(e^{t}+t\right)}-e^{e^{t}+2 t}+x^{2}\left(1+e^{e^{t}}\right)^{2}-(2 x+1)\left(e^{t+e^{t}}+e^{2 e^{t}+t}\right)\right]}{\left(1+e^{e^{t}}\right)^{3}} \tag{17}
\end{equation*}
$$

For $x=0$

$$
f^{\prime \prime}(0, t)=\frac{e^{2\left(e^{t}+t\right)}-e^{e^{t}+2 t}-\left(e^{t+e^{t}}+e^{2 e^{t}+t}\right)}{\left(1+e^{e^{t}}\right)^{3}}
$$

which has a zero in $t_{*}^{\prime}(x=0) \simeq 0.43$. The sign is

$$
\begin{aligned}
-\infty & <t<t_{*}^{\prime}(x=0) \Longrightarrow f^{\prime \prime}(0, t)<0 \\
t_{*}^{\prime}(x=0) & <t<+\infty \Longrightarrow f^{\prime \prime}(0, t)>0
\end{aligned}
$$

It follows that the graph of $f(0, t)$ is convex in $\left(-\infty, t_{*}^{\prime}(x=0)\right)$ and concave in $\left(t_{*}^{\prime}(x=0),+\infty\right)$. So $(0.43,0.18)$ is an inflection point with an oblique tangent. In fig. 2 we report the graph of $f(0, t)$.

For $x>0$ we perform a qualitative analysis. The parameter x controls the slope of the graph of $f(t)$ in $(-\infty, 0)$ since

$$
\frac{\partial}{\partial t} e^{x t}=x e^{x t}
$$

For $t \in(0,+\infty)$ the slope is controlled by $e^{e^{t}}$ in denominator. This implies that the effects of the parameter x are felt for $t \in(-\infty, 0)$, while in $(0,+\infty)$ the trend is practically independent of this parameter. Fig. 3 plots $f(x, t)$ for increasing values of the parameter x starting from $x=0$.

We rewrite (7)

$$
\begin{equation*}
F(x)=\int_{-\infty}^{+\infty} f(x, t) d t \tag{18}
\end{equation*}
$$

Figure 2: Trend of $f(0, t)$.
which Mathematica calculates through

$$
F(x)=\left(1-2^{1-x}\right) \Gamma(x) \zeta(x)
$$

As previously seen, for $x>0$ the integrand function is for $t \rightarrow \pm \infty$ an infinitesimal of infinitely large order; so the integral converges. More precisely:

$$
F(x)=\int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} d t+\underbrace{\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} d t}_{\text {converges } \forall x \in(0,1)}
$$

For $x=0$

$$
f(0, t)=\frac{1}{e^{e^{t}}+1} \underset{t \rightarrow-\infty}{\longrightarrow} \frac{1}{2} \Longrightarrow \int_{-\infty}^{0} \frac{d t}{e^{e^{t}}+1}=+\infty \Longrightarrow \lim _{x \rightarrow 0^{+}} F(x)=+\infty
$$

For $x>0$ the trend in $(-\infty, 0)$ is dominated by $e^{x t}$

$$
\frac{e^{x t}}{e^{t^{t}}+1} \underset{t \rightarrow-\infty}{\longrightarrow} e^{x t}
$$

so the integral converges. As x increases in $(-\infty, 0)$ the slope increases, and this favors the convergence of the integral ${ }^{1}$, simultaneously decreases the area of the base trapezoid $(-\infty, 0)$ and therefore the value of $F(x)$. This shows that $G(x)$ is strictly decreasing, as confirmed by the graph fig. 4 obtained with Mathematica.

[^0]

Figure 3: Trend of $f(x, t)$ for different values of x. Curve in green: $x=0$. The flattest curve towards the ordinate axis is for $x=1$.

Figure 4: Trend of $F(x)$.

4.2 Zeros of the Fourier Transform

We redefine the variables x, y in α, ω, and then rewrite (13):

$$
\begin{equation*}
I(\alpha, \omega)=\int_{-\infty}^{+\infty} \frac{e^{\alpha t}}{e^{e^{t}}+1} e^{i \omega t} d t \tag{19}
\end{equation*}
$$

It follows

$$
\begin{align*}
& I(\alpha, \omega)=I_{-}(\alpha, \omega)+I_{+}(\alpha, \omega) \tag{20}\\
& I_{-}(\alpha, \omega) \stackrel{\text { def }}{=} \int_{-\infty}^{0} \frac{e^{\alpha t}}{e^{e^{t}}+1} e^{i \omega t} d t \\
& I_{+}(\alpha, \omega) \stackrel{\text { def }}{=} \int_{0}^{+\infty} \frac{e^{\alpha t}}{e^{e^{t}}+1} e^{i \omega t} d t
\end{align*}
$$

Even if we are interested in $\alpha \in(0,1)$, it results:

$$
\begin{aligned}
& \left|I_{-}(\alpha, \omega)\right|=\int_{-\infty}^{0} \frac{e^{\alpha t}}{e^{e^{t}}+1} d t=+\infty, \quad \forall \alpha \in(-\infty, 0] ; \quad\left|I_{\alpha}^{(-)}(\omega)\right|<+\infty, \quad \forall \alpha \in(0,+\infty) \\
& \left|I_{+}(\alpha, \omega)\right|<+\infty, \quad \forall \alpha \in(-\infty,+\infty)
\end{aligned}
$$

Conclusion 3 The variable α conditions the convergence of $I_{-}(\alpha, \omega)$ but not that of $I_{+}(\alpha, \omega)$.
The integral (19) can be seen as:

- complex function of the real variables (α, ω);
- complex function of the complex variable $\alpha+i \omega$;
- family of functions of ω, with one real parameter α.

Due to the symmetry property established in the number 3, we can limit the search for zeros in the region:

$$
\begin{equation*}
A_{1}=\left\{(\alpha, \omega) \in \mathbb{R}^{2} \left\lvert\, 0<\alpha<\frac{1}{2}\right., \quad 0 \leq \omega<+\infty\right\} \tag{21}
\end{equation*}
$$

It follows

$$
\begin{equation*}
I(\alpha, \omega)=0 \Longleftrightarrow I_{-}(\alpha, \omega)=-I_{+}(\alpha, \omega) \Longrightarrow\left|I_{-}(\alpha, \omega)\right|=\left|I_{+}(\alpha, \omega)\right| \tag{22}
\end{equation*}
$$

We study the behavior of the individual modules for $\alpha \in(0,1)$.

$$
\left|I_{-}(\alpha, \omega)\right|=\left|\int_{-\infty}^{0} \frac{e^{\alpha t}}{e^{e^{t}}+1} e^{i \omega t} d t\right| \leq \int_{-\infty}^{0}\left|\frac{e^{\alpha t}}{e^{e^{t}}+1} e^{i \omega t}\right| d t=\int_{-\infty}^{0} \frac{e^{\alpha t}}{e^{e^{t}}+1} d t
$$

i.e.

$$
\begin{equation*}
\left|I_{-}(\alpha, \omega)\right| \leq \psi_{-}(\alpha) \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{-}(\alpha) \stackrel{\text { def }}{=} \int_{-\infty}^{0} \frac{e^{\alpha t}}{e^{e^{t}}+1} d t \tag{24}
\end{equation*}
$$

We have

$$
\sup _{\mathbb{R}}\left(\frac{1}{e^{e^{t}}+1}\right)=\frac{1}{2} \Longrightarrow \int_{-\infty}^{0} \frac{e^{\alpha t}}{e^{e^{t}}+1} d t<\frac{1}{2} \int_{-\infty}^{0} e^{\alpha t} d t=\frac{1}{2 \alpha}
$$

So

$$
\begin{equation*}
\left|I_{-}(\alpha, \omega)\right|<\frac{1}{2 \alpha}, \quad \forall \alpha \in(0,1) \tag{25}
\end{equation*}
$$

Incidentally

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0^{+}}\left|I_{-}(\alpha, \omega)\right|=\lim _{\alpha \rightarrow 0^{+}} \frac{1}{2 \alpha}=+\infty \tag{26}
\end{equation*}
$$

From (25): for $\alpha \rightarrow 0^{+}$and $\forall \omega \in \mathbb{R}$, the function $\left|I_{\alpha}^{(-)}(\omega)\right|$ is an infinitesimal of order $\beta<1$ (assuming α^{-1} as the reference infinitesimal). Furthermore:

$$
\begin{equation*}
\forall M>0, \exists \Delta_{M}(\omega)>0\left|0<\alpha<\Delta_{M}(\omega) \Longrightarrow\right| I_{-}(\alpha, \omega) \mid>M \tag{27}
\end{equation*}
$$

Let's consider

$$
\begin{gather*}
\delta_{M}=\inf _{\mathbb{R}}\left\{\Delta_{M}(\omega)\right\}>0 \tag{28}\\
\forall M>0, \exists \delta_{M}>0\left|0<\alpha<\delta_{M} \Longrightarrow\right| I_{-}(\alpha, \omega) \mid>M, \quad \forall \omega \in \mathbb{R} \tag{29}
\end{gather*}
$$

The function (24) is monotonically decreasing in $(0,1)$. This can be deduced from the trend of the integrand function for different values of $\alpha \in(0,1)$ (fig. 5).

Figure 5: Trend of $\frac{e^{\alpha t}}{e^{t}+1}$ for $\alpha=0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$.
Proceeding in a similar way for $\left|I_{+}(\alpha, \omega)\right|$

$$
\begin{equation*}
\left|I_{+}(\alpha, \omega)\right| \leq \psi_{+}(\alpha) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{+}(\alpha) \stackrel{\text { def }}{=} \int_{0}^{+\infty} \frac{e^{\alpha t}}{e^{e^{t}}+1} d t \tag{31}
\end{equation*}
$$

The functions $\psi_{ \pm}(\alpha)$ are not elementarily expressible, except for $\alpha=1$. Precisely:

$$
\begin{align*}
& \psi_{-}(1)=\int_{-\infty}^{0} \frac{d t}{e^{e^{t}}+1}=1+\ln 2-\ln (1+e) \tag{32}\\
& \psi_{+}(1)=\ln (1+e)-1<\psi_{-}(1)
\end{align*}
$$

It follows:

$$
\min _{(0,1)} \psi_{-}(\alpha)=\psi_{-}(1)=1+\ln 2-\ln (1+e), \sup _{(0,1)} \psi_{-}(\alpha)=+\infty
$$

In fig. 6 the trend of $\psi_{-}(\alpha)$.

Figure 6: Trend of $\psi_{-}(\alpha)$ obtained numerically.
It is easy to convince oneself that $\psi_{+}(\alpha)$ is monotonically increasing in $(0,1)$. So:

$$
\begin{align*}
& \min _{(0,1)} \psi_{+}(\alpha)=\psi_{+}(0)=\int_{0}^{+\infty} \frac{d t}{e^{e^{t}}+1} \simeq 0.180628 \tag{33}\\
& \max _{(0,1)} \psi_{+}(\alpha)=\psi_{+}(1)=\ln (1+e)-1
\end{align*}
$$

The graph is in fig. 7, while in fig. 8 single function graphs are compared.

Figure 7: Trend of $\psi_{+}(\alpha)$ obtained numerically.
From this analysis it follows immediately:

$$
\begin{equation*}
\alpha \in(0,1) \Longrightarrow \psi_{-}(\alpha)>\psi_{+}(\alpha) \tag{34}
\end{equation*}
$$

It can manifestly happen:

$$
\begin{equation*}
\left|I_{-}\left(\alpha_{0}, \omega_{0}\right)\right|=\left|I_{+}\left(\alpha_{0}, \omega_{0}\right)\right| \leq \psi_{+}\left(\alpha_{0}\right)<\psi_{-}\left(\alpha_{0}\right) \tag{35}
\end{equation*}
$$

Figure 8: Trend of $\psi_{ \pm}(\alpha)$ obtained numerically.
compatibly with (34). In other words, (34) does not rule out the presence of zeros in A_{1}. It follows that a sufficient condition for the non-existence of zeros in A_{1} is

$$
\begin{equation*}
\left|I_{-}(\alpha, \omega)\right|>\left|I_{+}(\alpha, \omega)\right|, \quad \forall(\alpha, \omega) \in A_{1} \tag{36}
\end{equation*}
$$

so that the right chains of inequalities are respectively:

$$
\begin{align*}
& \left|I_{+}(\alpha, \omega)\right| \leq \psi_{+}\left(\alpha_{0}\right)<\left|I_{-}(\alpha, \omega)\right| \leq \psi_{-}\left(\alpha_{0}\right) \tag{37}\\
& \left|I_{+}(\alpha, \omega)\right|<\left|I_{-}(\alpha, \omega)\right| \leq \psi_{+}\left(\alpha_{0}\right)<\psi_{-}\left(\alpha_{0}\right)
\end{align*}
$$

From (29) taking $M_{*}>\psi_{+}\left(\frac{1}{2}\right)$, we have

$$
\exists \delta_{M_{*}}>0\left|0<\alpha<\delta_{M} \Longrightarrow\right| I_{-}(\alpha, \omega) \left\lvert\,>M_{*}>\psi_{+}\left(\frac{1}{2}\right)>\psi_{+}(\alpha)\right., \forall \alpha \in\left(0, \frac{1}{2}\right), \quad \forall \omega \in \mathbb{R}
$$

per cui non esistono zeri in $\left(0, \delta_{M_{*}}\right)$ e per le note proprietà di simmetria, in $\left(1-\delta_{M_{*}}, 1\right)$. Ne segue che la striscia critica effettiva è (fig. 9)

$$
\begin{equation*}
A_{e f f}=\left\{z \in \mathbb{C} \mid \delta_{M_{*}}<\operatorname{Re} z<1-\delta_{M_{*}}, \quad-\infty<\operatorname{Im} z<+\infty\right\} \tag{38}
\end{equation*}
$$

Figure 9: The effective critical strip.

References

[1] Titchmarsh E.C., Heath-Brown D.R., The theory of the Riemann zeta-function Clarendon Press - Oxford.
[2] Edwards H.M., Riemann's Zeta Function Dover Publication, INC. Mineola, New York
[3] Smirnov V.I. Lezioni di Analisi Matematica, vol. II. Editori Riuniti.

[^0]: ${ }^{1}$ The parameter x therefore controls the speed of convergence of the integral in the interval $(-\infty, 0)$.

