Matematica Open Source - http://www.extrabyte.info Applied Mathematics Papers - 2023

Matematica Open Source

$$
\frac{d}{d x} f(x) \sum_{k=0}^{+\infty} a_{k} \int f(x) d x \oint_{\Gamma}(X d x+Y d y+Z d z)
$$

The Riemann Zeta function and the Fourier Transform

Marcello Colozzo

Contents

1 Introduction 2
2 A remarkable integral representation 2
3 Riemann Hypothesis 4
3.1 Fourier Transform 4
3.2 Zeros of the Fourier Transform 6
Bibliografia 9

1 Introduction

The Dirichlet series $\sum_{n=1}^{+\infty} n^{-z}$ converges for $\operatorname{Re} z>1$, and the sum is the Riemann zeta function:

$$
\begin{equation*}
\zeta(z)=\sum_{n=1}^{+\infty} \frac{1}{n^{z}}, \quad \operatorname{Re} z>1 \tag{1}
\end{equation*}
$$

Another notable series that can be expressed through the zeta function is:

$$
\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{z}}=\left(1-2^{1-z}\right) \zeta(z)
$$

which converges for $\operatorname{Re} z>0$.
Since the series are not very "handy" it is preferable to work with integral representations.

2 A remarkable integral representation

In Quantum Statistical Mechanics the following generalized integrals which are not elementary expressible often appear

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{t^{x-1} d t}{e^{t} \pm 1} \tag{2}
\end{equation*}
$$

having:

$$
\begin{align*}
\int_{0}^{+\infty} \frac{t^{x-1} d t}{e^{t}+1} & =\left(1-2^{1-x}\right) \Gamma(x) \zeta(x), \quad \forall x \in(0,+\infty) \tag{3}\\
\int_{0}^{+\infty} \frac{t^{x-1} d t}{e^{t}-1} & =\Gamma(x) \zeta(x), \quad \forall x \in(1,+\infty)
\end{align*}
$$

where $\Gamma(x)$ and $\zeta(x)$ are the Eulerian gamma function and the Riemann zeta function, respectively. Through an elementary change of variable, the first integral becomes

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} d t \tag{4}
\end{equation*}
$$

We define

$$
f(x, t)=\frac{e^{x t}}{e^{e^{t}}+1}, \quad\left\{\begin{array}{l}
x \in(0,1) \text { parameter } \tag{5}\\
t \in(-\infty,+\infty) \text { independent variable }
\end{array}\right.
$$

Taking into account the first of (3):

$$
\begin{equation*}
\hat{f}(x) \stackrel{\text { def }}{=} \int_{-\infty}^{+\infty} f(x, t) d t=\left(1-2^{1-x}\right) \Gamma(x) \zeta(x), \quad \forall x \in(0,+\infty) \tag{6}
\end{equation*}
$$

Proceeding by extension to the complex field, we can define the following function:

$$
\begin{equation*}
\hat{f}(z) \equiv \hat{f}(x+i y)=\int_{-\infty}^{+\infty} f(x, t) e^{i y t} d t=\left(1-2^{1-z}\right) \Gamma(z) \zeta(z), \quad \operatorname{Re}(z)>0 \tag{7}
\end{equation*}
$$

The non-trivial zeros of $\zeta(z)$ fall in the critical strip [1] of the complex plane defined by

$$
\begin{equation*}
A=\{z \in \mathbb{C} \mid 0<\operatorname{Re} z<1, \quad-\infty<\operatorname{Im} z<+\infty\} \tag{8}
\end{equation*}
$$

Proposition 1

$$
\begin{equation*}
\left|\left(1-2^{1-z}\right) \Gamma(z)\right|>0, \quad \forall z \in A \tag{9}
\end{equation*}
$$

Proof. The inequality (9) derives from the fact that the gamma function has no zeros [2], while $1-2^{1-z}$ is manifestly zero-free in A.

From the proposition just proved it follows $f(z)$ and $\zeta(z)$ have the same (non-trivial) zeros.

3 Riemann Hypothesis

3.1 Fourier Transform

From (7) we see that for a given $x \in(0,1)$ the complex function $f(x+i y)$ is the Fourier transform of (5).

Conjecture 2 (Riemann Hypothesis)

The non-trivial zeros of the function

$$
\begin{equation*}
\hat{f}(x+i y)=\int_{-\infty}^{+\infty} f(x, t) e^{i y t} d t \tag{10}
\end{equation*}
$$

have real part $x=1 / 2$.
Let us first study the behavior of the function $f(x, t)$ (given by (5)) which for each value of the parameter $x \in(0,1)$ is defined in $(-\infty,+\infty)$.

Sign and intersections with the axes

It turns out $g(x, t)>0, \forall t \in(-\infty,+\infty)$ for which the graph of f lies in the semi-plane of the positive ordinates. It does not intersect the abscissa axis, while it does intersect the ordinate axis at $\left(0,(e+1)^{-1}\right)$.

Behavior at extremes
After calculations:

$$
\lim _{t \rightarrow+\infty} f(x, t)=0^{+}, \quad \forall x \in(0,1)
$$

The order of infinitesimal:

$$
\begin{gather*}
\lim _{t \rightarrow+\infty} t^{\alpha} f(x, t)=0^{+}, \quad \forall \alpha>0 \quad \text { (infinitesimal of infinitely large order) } \tag{11}\\
\lim _{t \rightarrow-\infty} f(x, t)= \begin{cases}\frac{1}{2}^{-}, & \text {if } x=0 \\
0^{+}, & \text {if } x>0\end{cases}
\end{gather*}
$$

Precisely:

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} t^{\alpha} f(x>0, t)=0^{+}, \quad \forall \alpha>0 \tag{12}
\end{equation*}
$$

Conclusion: for $|t| \rightarrow+\infty$ the function $f(x>0, t)$ is an infinitesimal of order infinitely large, provided that it is $x>0$.

First derivative

$$
f^{\prime}(x, t) \equiv \frac{\partial}{\partial t} f(x, t)=\frac{e^{x t}\left[x\left(e^{e^{t}}+1\right)-e^{t+e^{t}}\right]}{\left(e^{t}+1\right)^{2}}
$$

For $x=0$

$$
f^{\prime}(0, t)=-\frac{e^{t+e^{t}}}{\left(e^{e^{t}}+1\right)^{2}}<0, \quad \forall t \in(-\infty,+\infty)
$$

so the function is strictly decreasing.
For $x>0$

$$
\begin{equation*}
f^{\prime}(x, t)=0 \Longleftrightarrow x\left(e^{e^{t}}+1\right)-e^{t+e^{t}}=0 \tag{13}
\end{equation*}
$$

which is solved numerically. After calculations, the root of the (13) è

$$
0<x<1 \Longrightarrow t_{*}(x) \in[\sim-6.32,0.2]
$$

Some values for assigned $x \in(0,1)$:

$$
\begin{aligned}
& t_{*}\left(\frac{1}{5}\right) \simeq-1.07 \\
& t_{*}\left(\frac{1}{4}\right) \simeq-0.88 \\
& t_{*}\left(\frac{1}{2}\right) \simeq-0.30 \\
& t_{*}\left(\frac{2}{3}\right) \simeq-0.07 \\
& t_{*}\left(\frac{3}{4}\right) \simeq 0.02
\end{aligned}
$$

The sign is

$$
\begin{aligned}
-\infty & <t<t_{*}(x) \Longrightarrow f^{\prime}(x, t)>0 \\
t_{*}(x) & <t<+\infty \Longrightarrow f^{\prime}(x, t)<0
\end{aligned}
$$

Hence the function is strictly increasing in $\left(-\infty, t_{*}(x)\right)$ is strictly decreasing in $\left(t_{*}(x),+\infty\right)$. So $t_{*}(x)$ is a point of relative maximum for

Second derivative

$$
\begin{equation*}
f^{\prime \prime}(x, t)=\frac{e^{x t}\left[e^{2\left(e^{t}+t\right)}-e^{e^{t}+2 t}+x^{2}\left(1+e^{e^{t}}\right)^{2}-(2 x+1)\left(e^{t+e^{t}}+e^{2 e^{t}+t}\right)\right]}{\left(1+e^{e^{t}}\right)^{3}} \tag{14}
\end{equation*}
$$

For $x=0$

$$
f^{\prime \prime}(0, t)=\frac{e^{2\left(e^{t}+t\right)}-e^{e^{t}+2 t}-\left(e^{t+e^{t}}+e^{2 e^{t}+t}\right)}{\left(1+e^{e^{t}}\right)^{3}}
$$

which has a zero in $t_{*}^{\prime}(x=0) \simeq 0.43$. The sign is

$$
\begin{aligned}
-\infty & <t<t_{*}^{\prime}(x=0) \Longrightarrow f^{\prime \prime}(0, t)<0 \\
t_{*}^{\prime}(x=0) & <t<+\infty \Longrightarrow f^{\prime \prime}(0, t)>0
\end{aligned}
$$

It follows that the graph of $f(0, t)$ is convex in $\left(-\infty, t_{*}^{\prime}(x=0)\right)$ and concave in $\left(t_{*}^{\prime}(x=0),+\infty\right)$. So $(0.43,0.18)$ is an inflection point with an oblique tangent. In fig. 1 we report the graph of $f(0, t)$.

For $x>0$ we perform a qualitative analysis. The parameter x controls the slope of the graph of $f(t)$ in $(-\infty, 0)$ since

$$
\frac{\partial}{\partial t} e^{x t}=x e^{x t}
$$

For $t \in(0,+\infty)$ the slope is controlled by $e^{e^{t}}$ in denominator. This implies that the effects of the parameter x are felt for $t \in(-\infty, 0)$, while in $(0,+\infty)$ the trend is practically independent of this parameter. Fig. 2 plots $f(x, t)$ for increasing values of the parameter x starting from $x=0$.

We rewrite (6)

$$
\begin{equation*}
F(x)=\int_{-\infty}^{+\infty} f(x, t) d t \tag{15}
\end{equation*}
$$

Figure 1: Trend of $f(0, t)$.
which Mathematica calculates through

$$
F(x)=\left(1-2^{1-x}\right) \Gamma(x) \zeta(x)
$$

As previously seen, for $x>0$ the integrand function is for $t \rightarrow \pm \infty$ an infinitesimal of infinitely large order; so the integral converges. More precisely:

$$
F(x)=\int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} d t+\underbrace{\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} d t}_{\text {converges } \forall x \in(0,1)}
$$

For $x=0$

$$
f(0, t)=\frac{1}{e^{e^{t}}+1} \underset{t \rightarrow-\infty}{\longrightarrow} \frac{1}{2} \Longrightarrow \int_{-\infty}^{0} \frac{d t}{e^{e^{t}}+1}=+\infty \Longrightarrow \lim _{x \rightarrow 0^{+}} F(x)=+\infty
$$

For $x>0$ the trend in $(-\infty, 0)$ is dominated by $e^{x t}$

$$
\frac{e^{x t}}{e^{e^{t}}+1} \underset{t \rightarrow-\infty}{\longrightarrow} e^{x t}
$$

so the integral converges. As x increases in $(-\infty, 0)$ the slope increases, and this favors the convergence of the integral ${ }^{1}$, simultaneously decreases the area of the base trapezoid $(-\infty, 0)$ and therefore the value of $F(x)$. This shows that $G(x)$ is strictly decreasing, as confirmed by the graph fig. 3 obtained with Mathematica.

3.2 Zeros of the Fourier Transform

(5) can be interpreted as a quantity that depends deterministically on time t :

$$
\begin{equation*}
f(t)=e^{t / \tau} \nu(t) \tag{16}
\end{equation*}
$$

where $\tau=x^{-1}$ plays the role of a time constant, while:

$$
\begin{equation*}
\nu(t)=\frac{1}{e^{e^{t}}+T}, \quad T=1 \mathrm{~s} \tag{17}
\end{equation*}
$$

[^0]

Figure 2: Trend of $f(x, t)$ for different values of x. Curve in green: $x=0$. The flattest curve towards the ordinate axis is for $x=1$.

Figure 3: Trend of $F(x)$.

It follows that (16) has the dimensions of a frequency. Think - hypothetically - of a <signal» with a frequency that varies over time. Thus the (10) can be written as

$$
\begin{equation*}
\hat{f}_{\tau}(\Omega)=\int_{-\infty}^{+\infty} e^{t / \tau} \nu(t) e^{i \Omega t} d t \tag{18}
\end{equation*}
$$

and is the Fourier transform of the «frequency» $f(t)$. By the Riemann Hypothesis:

$$
\begin{equation*}
\exists \Omega_{0} \in R \mid \hat{f}_{\tau}\left(\Omega_{0}\right)=0 \Longleftrightarrow \tau=2 \tag{19}
\end{equation*}
$$

References

[1] Titchmarsh E.C., Heath-Brown D.R., The theory of the Riemann zeta-function Clarendon Press - Oxford.
[2] Smirnov V.I. Lezioni di Analisi Matematica, vol. II. Editori Riuniti.

[^0]: ${ }^{1}$ The parameter x therefore controls the speed of convergence of the integral in the interval $(-\infty, 0)$.

