Analisi spettrale dei decessi per Covid-19

giovedì, Settembre 23rd, 2021

covid-19,decessi


I risultati sono riportati in questo notebook di Mathematica (in costante aggiornamento). Qui viene discussa la parte analitica.
Argomenti:

  • Strategia di attacco: la DFT
  • Aliasing
  • Troncamento di un segnale
  • Campionamento di un segnale troncato
  • Cenni sull'algoritmo FFT
  • Il Teorema di Wiener-Khintchine

(altro…)




Verso un modello matematico di Metapandemia

lunedì, Aprile 12th, 2021

covid-19,pandemia,virus mutato


Un virus non «pensa». Semplicemente, «esiste»

Il titolo di questa sezione è corroborato da una modellizzazione di un virus del tipo macchina molecolare deterministica, matematicamente rappresentata da un sistema autonomo:

essendo f(y) lipschitziana, onde esiste ed è unica la soluzione y(t) che enumera univocamente il numero di contagi nell'intervallo [t0,t]. Lo studio del ciclo vitale di una pandemia, è legato allo studio di funzione della derivata prima (rispetto al tempo) della predetta grandezza. Sotto ragionevoli ipotesi, ci si aspetta un comportamento del tipo di quello graficato in fig.


che possiamo denominare onda pandemica. Assumendo la funzione y(t) analitica, si ha che tale funzione e la sua derivata prima (è questa la grandezza interessante) non si annullano identicamente al finito. In particolare, per la derivata prima (fig. precedente).


(altro…)