Rotazioni nello spazio euclideo

Marcello Colozzo - http://www.extrabyte.info

Siano E ed F due spazi vettoriali sullo stesso campo \mathbb{K} .

Definizione 1 $\hat{A} \in \text{hom}(E, F)$ \hat{e} **non singolare** se ker $\hat{A} = \{0_E\}$, $essendo\ 0_E$ il vettore nullo di E. Nel caso contrario, diremo che \hat{A} \hat{e} singolare.

In altri termini, \hat{A} è non singolare se

$$\sharp \xi \in E - \{0_E\} \mid \hat{A}(\xi) = 0_F,$$

dove 0_F è il vettore nullo di F. Per un noto teorema, un omomorfismo suriettivo è un isomorfismo se e solo se è iniettivo, e ciò a sua volta implica ker $\hat{A} = \{0_E\}$, i.e. la non singolarità di \hat{A} . Ne concludiamo che la non singolarità è una condizione necessaria (ma non sufficiente) affinché E ed F siano isomorfi.

Esercizio 2 Sia $\mathcal{R}(Oxyz)$ un riferimento cartesiano ortogonale dello spazio euclideo \mathbb{R}^3 . La rotazione di un qualunque vettore $\xi = (x, y, z) \in \mathbb{R}^3$ attorno all'asse z, è il risultato dell'applicazione di un endomorfismo \hat{R}_z :

$$\hat{R}_z(x, y, z) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta, z), \quad \forall (x, y, z) \in \mathbb{R}^3,$$
(1)

essendo θ l'angolo di rotazione, contato positivamente se la rotazione vista da un osservatore disposto lungo la direzione positiva dell'asse z, è antioraria.

Mostrare che tale endomorfismo è non singolare.

Soluzione

L'immagine di R_z è:

$$\hat{R}_z\left(\mathbb{R}^3\right) = \mathcal{L}\left(\left\{\hat{R}_z\left(e_i\right)\right\}\right),\tag{2}$$

dove $\{e_i\}$ è la base canonica di \mathbb{R}^3 :

$$e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)$$
 (3)

Quindi

$$\hat{R}_{z}(e_{1}) = \hat{R}_{z}(1,0,0) = (\cos\theta, \sin\theta, 0)$$

$$\hat{R}_{z}(e_{2}) = \hat{R}_{z}(0,1,0) = (-\sin\theta, \cos\theta, 0)$$

$$\hat{R}_{z}(e_{3}) = \hat{R}_{z}(0,0,1) = (0,0,1)$$
(4)

Da ciò segue che la matrice rappresentativa di \hat{R}_z nella base canonica si scrive:

$$R_{z}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$
 (5)

Risulta

$$\det R_z(\theta) = \begin{vmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = +1, \quad \forall \theta \in \mathbb{R}$$
 (6)

Cioè $R_z(\theta)$ è **ortogonale** i.e. una rotazione attorno all'asse z è una trasformazione ortogonale dello spazio euclideo \mathbb{R}^3 . Il rango dell'omomorfismo \hat{R}_z è

$$R\left(\hat{R}_z\right) = \rho\left(R_z\left(\theta\right)\right) = 3\tag{7}$$

Segue dalla solita formula

$$R\left(\hat{R}_z\right) + N\left(\hat{R}_z\right) = \dim \mathbb{R}^3 = 3,$$
 (8)

da cui la nullità di \hat{R}_z

$$N\left(\hat{R}_z\right) = 0 \Longrightarrow \ker \hat{R}_z = \{0\},$$
 (9)

e quindi la non singolarità di $\hat{R}_z.$