Le funzioni circolari

[Marcello Colozzo http://www.extrabyte.info]

Prima di eseguire lo studio delle cosiddette funzioni circolari, premettiamo un ripasso delle nozioni fondamentali di trigonometria piana. Siano r e s due rette orientate complanari e formanti un angolo acuto (fig. 1).

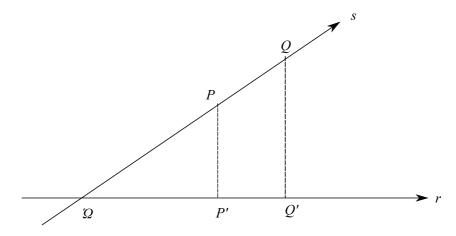


Figura 1: Le rette r e s si intersecano nel punto Ω formando un angolo acuto.

Detto Ω il punto di intersezione, denotiamo con x la misura in radianti dell'angolo acuto in Ω , onde $x \in \left(0, \frac{\pi}{2}\right)$. Comunque prendiamo $P, Q \in s - \{\Omega\}$ con $P \not\equiv Q$, restano univocamente definite le proiezioni ortogonali P', Q' su r. I triangoli $\Omega PP'$ e $\Omega QQ'$ sono simili, pertanto scriviamo $\Omega PP' \sim \Omega QQ'$:

$$\Omega PP' \sim \Omega QQ' \Longrightarrow \frac{\overline{PP'}}{\overline{\Omega P}} = \frac{\overline{QQ'}}{\overline{\Omega Q}}, \quad \frac{\overline{\Omega P'}}{\overline{\Omega P}} = \frac{\overline{\Omega Q'}}{\overline{\Omega Q}}$$
(1)

Assegnato il punto $P \in s - \{\Omega\}$, al variare di Q su $s - \{\Omega\}$, restano definiti ∞^1 triangoli rettangoli $\Omega QQ'$ aventi un vertice in Ω e l'ipotenusa su s, la cui lunghezza è $\overline{\Omega Q}$. Tali triangoli compongono l'insieme:

$$\Delta = \{\Omega Q Q' \mid Q \in s - \{\Omega\}\} \neq \emptyset,$$

In tal modo, le (1) si riscrivono:

$$\frac{\overline{PP'}}{\overline{\Omega P}} = \frac{\overline{QQ'}}{\overline{\Omega Q}}, \quad \frac{\overline{\Omega P'}}{\overline{\Omega P}} = \frac{\overline{\Omega Q'}}{\overline{\Omega Q}}, \qquad \forall (\Omega Q Q') \in \Delta$$
 (2)

Ne consegue che l'insieme Δ conserva i rapporti $\frac{\overline{QQ'}}{\overline{\Omega Q}}, \frac{\overline{\Omega Q'}}{\overline{\Omega Q}}, \ \forall Q \in s - \{\Omega, P\}$:

$$\exists c_1, c_2 \in (0, +\infty) \mid \frac{\overline{QQ'}}{\overline{\Omega Q}} = c_1, \quad \frac{\overline{\Omega Q'}}{\overline{\Omega Q}} = c_2, \quad \forall Q \in s - \{\Omega\}$$
 (3)

Geometricamente significa che il rapporto tra il cateto opposto all'angolo in Ω e l'ipotenusa, e il rapporto tra il cateto adiacente e l'ipotenusa, sono indipendenti dal triangolo rettangolo $\Omega QQ'$. Ciò è espresso dalle (3) in cui abbiamo indicato con c_1 e c_2 i valori costanti di detti rapporti. È chiaro, tuttavia, che c_1 e c_2 dipendono esclusivamente dall'angolo in Ω , o ciò che è lo stesso, da x. Ne consegue che c_1 e c_2 sono funzioni reali della variabile reale $x \in (0, \frac{\pi}{2})$. Scriviamo:

$$f: \left(0, \frac{\pi}{2}\right) \to \mathbb{R} , \qquad g: \left(0, \frac{\pi}{2}\right) \to \mathbb{R}$$

$$x \to \frac{\overline{QQ'}}{\Omega \overline{Q}}, \ \forall x \in \left(0, \frac{\pi}{2}\right) \qquad x \to \frac{\overline{\Omega Q'}}{\Omega \overline{Q}}, \ \forall x \in \left(0, \frac{\pi}{2}\right)$$

$$(4)$$

Poniamo per definizione:

$$f(x) = \sin x \iff \frac{\overline{QQ'}}{\overline{\Omega Q}} = \sin x$$

$$g(x) = \cos x \iff \frac{\overline{\Omega Q'}}{\overline{\Omega Q}} = \cos x,$$
(5)

che sono rispettivamente il **seno** e il **coseno** dell'angolo in Ω o, ciò che è lo stesso, del numero reale $x \in (0, \frac{\pi}{2})$. Tali definizioni hanno un'immediata interpretazione geometrica. Assegnato un qualunque triangolo rettangolo $\Omega PP'$ (fig. 2), assumiamo come unità di misura la lunghezza del segmento ΩP , cioè la lunghezza dell'ipotenusa. Il seno dell'angolo in Ω è la misura del cateto opposto, mentre il seno è la misura del cateto adiacente.

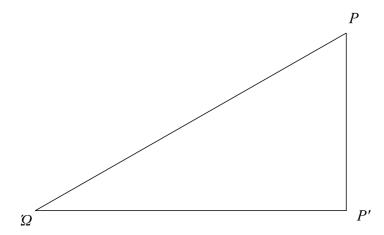


Figura 2: Assumendo $\overline{\Omega P} = 1$, si ha $\sin x = \overline{PP'}$, $\cos x = \overline{\Omega P'}$, dove $x \in (0, \frac{\pi}{2})$ è la misura in radianti dell'angolo in Ω .

Abbiamo assunto $x \in (0, \frac{\pi}{2})$; in realtà le definizioni di seno e coseno si estendono facilmente a x = 0 e $x = \frac{\pi}{2}$. Risulta:

$$x = 0 \Longrightarrow P' \equiv P \Longrightarrow \Omega P P' \equiv \Omega P$$
.

ovvero il triangolo $\Omega PP'$ degenera nel segmento ΩP . Ne consegue che il cateto opposto all'angolo in Ω ha lunghezza nulla, mentre il cateto adiancente ha lunghezza pari a $\overline{\Omega P}$, cosicchè:

$$\sin 0 = 0, \quad \cos 0 = 1 \tag{6}$$

Inoltre:

$$x = \frac{\pi}{2} \Longrightarrow P' \equiv \Omega \Longrightarrow \Omega P P' \equiv \Omega P$$

ovvero il triangolo $\Omega PP'$ degenera nel segmento ΩP . È facile convincersi che:

$$\sin\frac{\pi}{2} = 1, \quad \cos\frac{\pi}{2} = 0 \tag{7}$$

Nel piano contenente le rette r, s fissiamo un riferimento cartesiano monometrico ortogonale $\mathcal{R}\left(\Omega\xi\eta\right)$ orientando l'asse ξ nella direzione e verso della retta r (fig. 3) e con origine nel punto Ω di intersezione di r con s.

Assegnato $P \in s - \{\Omega\}$, assumiamo come unità di misura in \mathcal{R} la lunghezza del segmento di estremi Ω e P; cioè poniamo $\overline{\Omega P} = 1$. Risulta $P \in s \cap \Gamma$, essendo $\Gamma : \xi^2 + \eta^2 = 1$, cioè la circonferenza centrata in Ω e di raggio unitario. Inoltre $P(\cos x, \sin x)$, dove x è, al solito, la misura in radianti dell'angolo $U\Omega P$, essendo U(1,0). In altri termini, le coordinate cartesiane di P nel riferimento \mathcal{R} sono rispettivamente il coseno e il seno di x. Per definizione di misura in radianti di un angolo:

$$x = \frac{\stackrel{\frown}{UP}}{\overline{\Omega U}} = \stackrel{\frown}{\overline{\Omega U}=1} \stackrel{\frown}{UP}$$

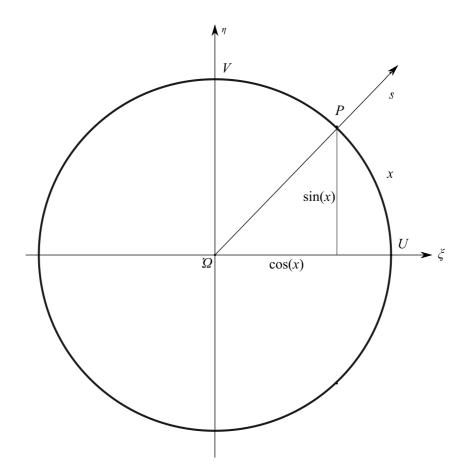


Figura 3: Circonferenza trigonometrica.

Cioè x è la lunghezza dell'arco \widehat{UP} . Il punto U si chiama **origine degli archi**, mentre Γ è la **circonferenza trigonometrica** (o **goniometrica**). È chiaro che $U(\cos 0, \sin 0)$ cioè $\sin 0$ e $\cos 0$ sono rispettivamente l'ordinata e l'ascissa del punto U. Detto V il punto di intersezione di Γ con l'asse η si ha $V(\cos \frac{\pi}{2}, \sin \frac{\pi}{2})$ cioè V(0, 1).

Le (6)-(7) ci consentono di prolungare le funzioni (5) dall'intervallo $(0, \frac{\pi}{2})$ all'intervallo $[0, \frac{\pi}{2}]$:

$$f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R} , \qquad g: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$$

$$x \longrightarrow \sin x, \ \forall x \in \left[0, \frac{\pi}{2}\right] \qquad x \longrightarrow \cos x, \ \forall x \in \left[0, \frac{\pi}{2}\right]$$

$$(8)$$

La monotonia delle funzioni f e g può essere studiata in base a considerazioni geometriche. Innanzitutto assumiamo come verso positivo delle rotazioni nel riferimento \mathcal{R} , il verso antiorario. Risulta:

$$x = 0 \Longrightarrow s \equiv \xi \Longrightarrow P \equiv U$$

Al crescere di x in $\left[0, \frac{\pi}{2}\right]$, la retta s compie una rotazione attorno a Ω nel verso positivo. Conseguentemente, il punto P si sposta su Γ percorrendo l'arco $\stackrel{\frown}{UP}$ orientato da U verso V.

$$x = \frac{\pi}{2} \Longrightarrow s \equiv \eta \Longrightarrow P \equiv V$$

Ciò implica:

$$0 \le x \le \frac{\pi}{2} \Longrightarrow \left\{ \begin{array}{l} 0 \le f\left(x\right) \le 1\\ 1 \ge g\left(x\right) \ge 0 \end{array} \right.$$

Ne consegue che f è strettamente crescente e g è strettamente decrescente. Riguardo al codominio: $f\left(\left[0,\frac{\pi}{2}\right]\right) = g\left(\left[0,\frac{\pi}{2}\right]\right) = [0,1]$. Le funzioni (8) possono essere ulteriormente prolungate. Precisamente da $\left[0,\frac{\pi}{2}\right]$ a \mathbb{R} . A tale scopo, tracciamo nuovamente la circonferenza trigonometrica (vedasi fig. 4).

Supponiamo che inizialmente sia x=0, cioè $s\equiv \xi$. Facendo ruotare la semiretta s attorno a Ω , nel verso positivo, di un angolo la cui misura in radianti è $\leq \frac{\pi}{2}$, il punto di intersezione di s con Γ descrive l'arco \widehat{UP} nel verso positivo delle rotazioni. Se, invece, s ruota attorno a Ω nel verso negativo, il punto di intersezione di s con Γ descrive l'arco \widehat{UP}' nel verso negativo delle rotazioni. Se in particolare, nei due casi suddetti la semiretta s è ruotata di uno stesso angolo ma in versi opposti si ha che gli archi \widehat{UP} e \widehat{UP}' hanno la stessa lunghezza. Chiamiamo tale lunghezza **misura assoluta** dell'arco \widehat{UP} (o di \widehat{UP}').

Definizione 1 Dicesi **misura relativa** di un arco orientato il numero reale x tale che |x| è la lunghezza dell'arco (misura assoluta), risultando x > 0 se il verso dell'arco orientato è concorde al verso positivo delle rotazioni; x < 0 se è discorde.

Nel caso in esame (fig. 4), se x è la misura relativa di \widehat{UP} , risulta x>0, mentre la misura relativa dell'arco orientato $\widehat{UP'}$ è -x.

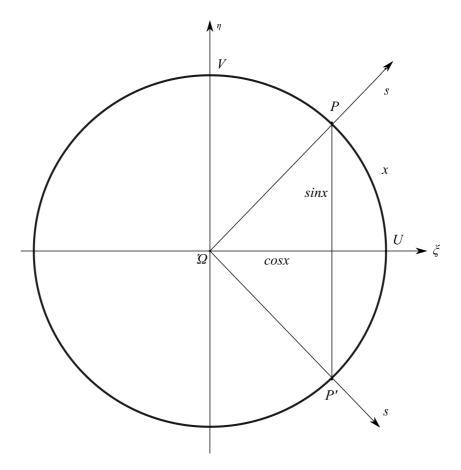


Figura 4: Consideriamo due rotazioni possibili della semiretta s attorno a Ω . La prima nel verso positivo, la seconda nel verso negativo delle rotazioni.

Da tale definizione segue che un qualunque $x \in \mathbb{R}$ può essere considerato la misura relativa di un assegnato arco orientato \widehat{UP} , risultando:

$$|x| < 2\pi \Longrightarrow \stackrel{\frown}{UP} \subset \Gamma,$$

cioè $\stackrel{\frown}{UP}$ è un arco orientato di Γ di lunghezza $< 2\pi$. Si ha x>0 se $\stackrel{\frown}{UP}$ è orientato nel verso positivo; x<0 nel caso contrario. Se $|x|>2\pi$ possono presentarsi i seguenti casi:

- 1. $\exists k \in \mathbb{Z} \{0\} \mid x = 2k\pi \Longrightarrow \widehat{UP}$ è la circonferenza Γ percorsa |k| volte. Se k > 0 è percorsa nel verso positivo. Se k < 0, nel verso negativo. Ad esempio, se $x = -6\pi$, si ha che l'arco orientato \widehat{UP} è la circonferenza Γ percorsa 3 volte nel verso negativo delle rotazioni, cioè nel verso orario.
- 2. $\nexists k \in \mathbb{Z} \{0\} \mid x = 2k\pi$

Allora:

$$h \in \mathbb{Z} - \{0\} \mid h = \left[\frac{x}{2\pi}\right] \Longrightarrow \exists \alpha_0 \in \mathbb{R} - \mathbb{N} \mid |\alpha_0| < 1, \quad \frac{x}{2\pi} = h + \alpha_0$$

Cioè:

$$x = x_0 + 2h\pi$$

dove $x_0 = 2\pi\alpha_0$ e poichè $|\alpha_0| < 1$ si ha $|x_0| < 2\pi$.

Il percorso totale del punto di intersezione di s con Γ , è la circonferenza Γ percorsa |h| volte più l'arco orientato $\stackrel{\frown}{UP}$ di misura relativa x_0 .

Esempio 2 Supponiamo che sia x = 40, onde x non è multiplo intero di 2π . Approximando alla quarta cifra decimale si ha

$$\frac{x}{2\pi} = \frac{40}{2\pi} = 6.3662\tag{9}$$

Quindi:

$$h = \left[\frac{40}{2\pi}\right] = 6\tag{10}$$

Pertanto

$$x = 2.3009 + 6(2\pi)$$

Cioè, x = 40 è la misura della ciconferenza Γ percorsa 6 volte nel verso positivo e di un arco di misura relativa 2.3009.

Osserviamo che in tutti i casi possibili il punto P è univocamente determinato da x. È naturale assumere come $\cos x$ e $\sin x$ le coordinate cartesiane di P nel riferimento $\mathcal{R}\left(\Omega\xi\eta\right)$. In parole povere, assegnato $x\in\mathbb{R}$, resta univocamente determinato il punto $P\in\Gamma$. Detto punto avrà coordinate (ξ,η) e assumiamo $\cos x=\xi$, $\sin x=\eta$.

Abbiamo, dunque, le funzioni $\sin x \in \cos x$ definite in \mathbb{R} e di codomino è [0,1].

1 Proprietà e relazioni notevoli

Dalle definizioni precedenti segue:

$$\sin(-x) = -\sin x$$
, $\cos(-x) = \cos x$, $\forall x \in \mathbb{R}$,

cioè $\sin x$ è funzione dispari, mentre $\cos x$ è funzioni pari.

Assegnato x, determiniamo $\sin\left(\frac{\pi}{2}-x\right)$ e $\cos\left(\frac{\pi}{2}-x\right)$. Dalla fig. 5 (senza perdita di generalità, abbiamo assumto $x\in\left(0,\frac{\pi}{2}\right)$) vediamo che $\frac{\pi}{2}-x$ è la misura in radianti dell'angolo in P. Denotando con N la proiezione ortogonale di P sull'asse ξ , per definizione di $\sin x$ e $\cos x$:

$$\sin\left(\frac{\pi}{2} - x\right) = \frac{\overline{\Omega N}}{\overline{\Omega P}} = \overline{\Omega N},$$

cioè:

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x, \quad \forall x \in \mathbb{R}$$

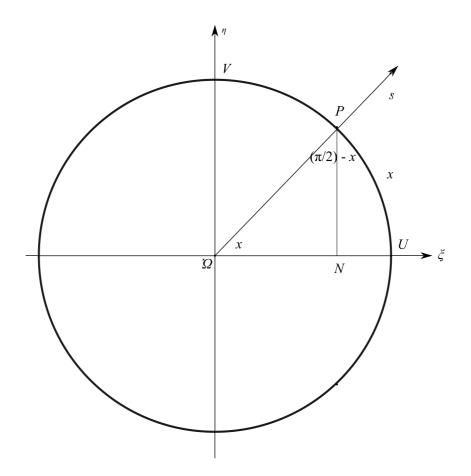


Figura 5: Il complementare dell'angolo la cui misura in radianti è x, è l'angolo in P.

In maniera analoga:

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x, \quad \forall x \in \mathbb{R}$$

Per determinare $\sin (\pi - x)$ e $\cos (\pi - x)$ tracciamo nuovamente la circonferenza trigonometrica (fig. 6). Detto Q il punto di Γ tale che la misura relativa dell'arco orientato \widehat{UQ} da U verso Q sia pari a $\pi - x$, si ha¹ $Q(\cos (\pi - x), \sin (\pi - x))$. Ma $Q(-\cos x, \sin x)$, per cui:

$$(\cos(\pi - x), \sin(\pi - x)) = (-\cos x, \sin x), \quad \forall x \in \mathbb{R}$$

Trattandosi di una uguaglianza tra coppie ordinate, deve essere:

$$\sin(\pi - x) = \sin x$$
, $\cos(\pi - x) = -\cos x$, $\forall x \in \mathbb{R}$

Determiniamo ora i valori assunti da $\sin x$ e $\cos x$ in $\pi + x$. Tracciamo nuovamente la circonferenza trignometrica. Detto Q il punto di Γ tale che la misura relativa dell'arco orientato Q da Q verso Q sia pari a Q (Q (Q (Q (Q (Q (Q), Q (Q (Q)). Ma Q (Q (Q), Q (Q

$$(\cos(\pi + x), \sin(\pi + x)) = (-\cos x, -\sin x), \quad \forall x \in \mathbb{R}$$

Trattandosi di una uguaglianza tra coppie ordinate, deve essere:

$$\sin(\pi + x) = -\sin x$$
, $\cos(\pi + x) = -\cos x$, $\forall x \in \mathbb{R}$

Per quanto riguarda i valori assunti in $x + 2\pi$, è chiaro che $\sin(x + 2\pi) = \sin x$, $\cos(x + 2\pi) = \cos x$.

 $^{{}^{1}}Q$ è il simmetrico di P rispetto all'asse η .

 $^{^{2}}Q$ è il simmetrico di P rispetto all'origine Ω .

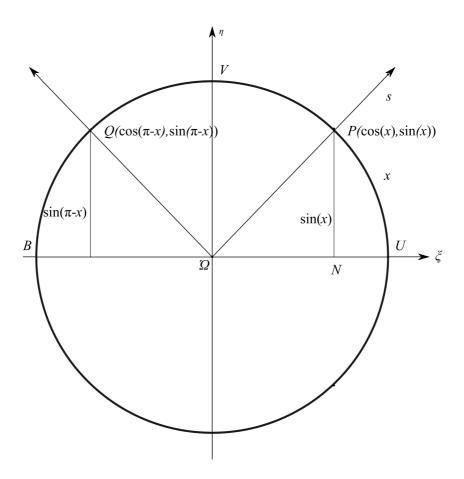


Figura 6: Il supplementare dell'angolo la cui misura in radianti è x, è la misura relativa dell'arco PB o, ciò che è lo stesso, dell'arco UQ, dove Q è il simmetrico di P rispetto all'asse η . Si noti che anche in questo caso, senza perdita di generalità, abbiamo assunto $x \in (0, \frac{\pi}{2})$.

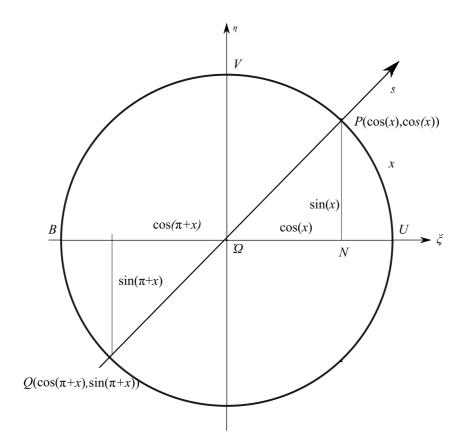


Figura 7: Le coordinate cartesiane del punto Q (univocamente individuato da $\pi + x$, quale misura relativa dell'arco $\stackrel{\frown}{UQ}$)

Inoltre:

$$\sin(x+k\pi) = (-1)^k \sin x$$
, $\cos(x+k\pi) = (-1)^k \cos x$, $\forall k \in \mathbb{Z}$

Posto $T=2\pi$:

$$\forall x \in \mathbb{R}, \begin{cases} \sin(x + kT) = \sin x \\ \cos(x + kT) = \cos x \end{cases}, \forall k \in \mathbb{Z}$$

Da ciò segue che le funzioni $\sin x$ e $\cos x$ sono periodiche di periodo 2π . La periodicità ci consente di studiare la restrizione delle funzioni $f(x) = \sin x$, $g(x) = \cos x$ all'intervallo $[-\pi, \pi]$. D'altra parte, la parità di f e g ci permette di studiare tali funzioni in $[0, \pi]$. I corrispondenti grafici verranno poi tracciati per simmetria. Precisamente, simmetria rispetto all'origine per la funzione f, simmetria rispetto all'asse g per la funzione g.

2 Studio della funzione $f(x) = \sin x$

Per quanto precede, $\sin x$ è strettamente crescente in $\left[0, \frac{\pi}{2}\right]$. Abbiamo poi visto che il codominio della restrizione di f al suddetto intervallo è [0, 1].

$$0 \le x \le \frac{\pi}{2} \Longrightarrow 0 \le f(x) \le 1 \tag{11}$$

Dalla fig. 6 vediamo che sin x è strettamente decrescente in $\left[\frac{\pi}{2}, \pi\right]$:

$$\frac{\pi}{2} \le x \le \pi \Longrightarrow 1 \ge f(x) \ge 0 \tag{12}$$

Dalle (11)-(12) segue $f([0,\pi]) = [0,1]$. Ma f è dispari, per cui:

$$f\left([0,\pi]\right) = [0,1] \underset{f \text{ è dispari}}{\Longrightarrow} f\left([-\pi,0]\right) = [-1,0]$$

Ne consegue che il codominio di $\sin x$ è $[-1,0] \cap [0,1] = [-1,1]$. Sempre dalla simmetria rispetto all'origine, vediamo che $\sin x$ è strettamente crescente in $\left[-\frac{\pi}{2},0\right]$ e strettamente decrescente in $\left[-\pi,-\frac{\pi}{2}\right]$. Ne consegue che il codominio di $\sin x$ è $[-1,0] \cap [0,1] = [-1,1]$. Sempre dalla simmetria rispetto all'origine, vediamo che $\sin x$ è strettamente crescente in $\left[-\frac{\pi}{2},0\right]$ e strettamente decrescente in $\left[-\pi,-\frac{\pi}{2}\right]$.

Per lo studio della monotonia di sin x in $(-\infty, +\infty)$, poniamo:

$$I_k = \left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right], \quad \text{con } k \in \mathbb{Z}$$

Dobbiamo distinguere k pari da k dispari. Abbiamo:

$$k \text{ pari} \Longrightarrow k = 2h, \text{ con } h \in \mathbb{Z},$$

per cui:

$$I_{2h} = \left[-\frac{\pi}{2} + 2h\pi, \frac{\pi}{2} + 2h\pi \right], \quad \text{con } h \in \mathbb{Z}$$
 (13)

Ma sin x è periodica di periodo 2π , onde è strettamente crescente in ogni intervallo I_{2h} (in quanto è strettamente crescente in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$). Se k è dispari (k=2h+1):

$$I_{2h+1} = \mathbb{R} - I_{2h} = \left[\frac{\pi}{2} + 2h\pi, \frac{3}{2}\pi + 2h\pi\right], \text{ con } h \in \mathbb{Z}$$

Dalla circonferenza trigonometrica vediamo che $\sin x$ è strettamente decrescente in $\left[\frac{\pi}{2}, \frac{3}{2}\pi\right]$, per cui in forza della periodicità si ha che $\sin x$ è strettamente decrescente in ogni intervallo I_{2h+1} .

Esplicitiamo alcuni intervalli di monotonia. Dalla (13) vediamo che $\sin x$ è strettamente crescente in:

$$h = 0 \Longrightarrow I_0 = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$h = -1 \Longrightarrow I_{-2} = \left[-\frac{5}{2}\pi, -\frac{3}{2}\pi \right]$$

$$h = +1 \Longrightarrow I_2 = \left[\frac{3}{2}\pi, \frac{5}{2}\pi \right]$$

$$h = -2 \Longrightarrow I_{-4} = \left[-\frac{9}{2}\pi, -\frac{7}{2}\pi \right]$$

$$h = +2 \Longrightarrow I_4 = \left[\frac{7}{2}\pi, \frac{9}{2}\pi \right]$$

$$h = -3 \Longrightarrow I_{-6} = \left[-\frac{13}{2}\pi, -\frac{11}{2}\pi \right]$$

$$h = +3 \Longrightarrow I_6 = \left[\frac{11}{2}\pi, \frac{13}{2}\pi \right]$$

Nelle figg. 8-9-10-11 riportiamo il grafico della restrizione di $\sin x$ a vari intervalli. Il grafico della funzione $\sin x$ si chiama **sinusoide**. Gli zeri della funzione sono:

$$x_k = k\pi, \ \forall k \in \mathbb{Z}$$

Assume il valore +1 nei punti:

$$x'_{k} = \frac{\pi}{2} + 2k\pi = \frac{\pi}{2} (4k+1), \quad \forall k \in \mathbb{Z}$$

Assume il valore -1 nei punti:

$$x_k'' = \frac{3}{2}\pi + 2k\pi = \frac{3\pi}{2}(2k+1), \quad \forall k \in \mathbb{Z}$$

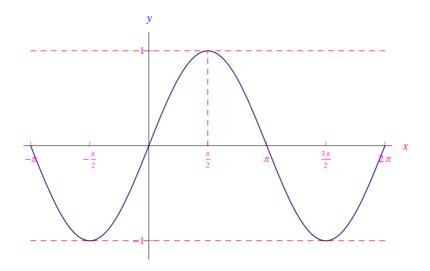


Figura 8: Grafico di $\sin x$ in $[-\pi, 2\pi]$.

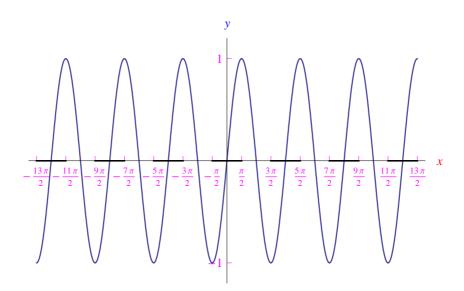


Figura 9: Grafico di $\sin x$ in $\left[-\frac{13}{2}\pi, \frac{13}{2}\pi\right]$, da cui sono visibili gli intervalli di crescenza (14).

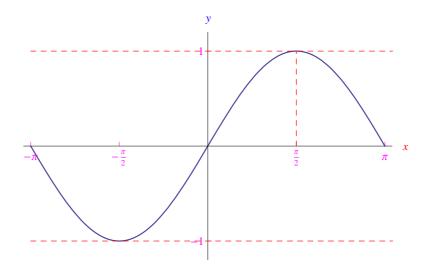


Figura 10: Grafico di $\sin x$ in $[-\pi, \pi]$.

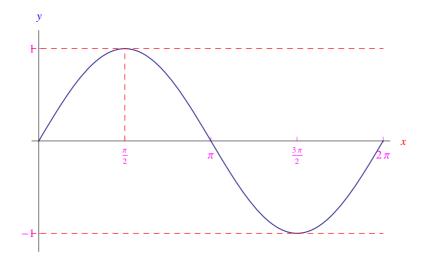


Figura 11: Grafico di $\sin x$ in $[0, 2\pi]$.

3 Studio della funzione $g(x) = \cos x$

Abbiamo visto che cos x è strettamente decrescente in $\left[0, \frac{\pi}{2}\right]$ e che il codominio della restrizione al suddetto intervallo è $\left[0, 1\right]$. Cioè cos x assume in $\left[0, \frac{\pi}{2}\right]$ tutti e soli i valori appartenenti a $\left[0, 1\right]$:

$$0 \le x \le 1 \Longrightarrow 1 \ge g(x) \ge 0 \tag{15}$$

Dalla fig. 6 vediamo che g(x) è strettamente decrescente in $\left[\frac{\pi}{2}, \pi\right]$:

$$\frac{\pi}{2} \le x \le \pi \Longrightarrow 0 \ge g(x) \ge -1 \tag{16}$$

Dalle (15)-(16) segue $g([0,\pi])=[-1,1]$. Ma g è pari, per cui:

$$g([0,\pi]) = [-1,1] \underset{\text{g è pari}}{\Longrightarrow} g([-\pi,0]) = [-1,1]$$

Ne consegue che il codominio di $\cos x$ è [-1,1]. Sempre dalla simmetria rispetto all'asse y, vediamo che $\cos x$ è strettamente crescente in $[-\pi,0]$ e strettamente crescente in $[0,\pi]$.

Per lo studio della monotonia di $\cos x$ in $(-\infty, +\infty)$, poniamo:

$$J_k = [k\pi, (k+1)\pi], \quad \text{con } k \in \mathbb{Z}$$

Dobbiamo distingure k pari da k dispari. Abbiamo:

$$k \text{ pari} \Longrightarrow k = 2h, \text{ con } h \in \mathbb{Z},$$

per cui:

$$J_{2h} = [2h\pi, (2h+1)\pi] = [2h\pi, \pi + 2h\pi], \text{ con } h \in \mathbb{Z}$$
 (17)

Ma cos x è periodica di periodo 2π , onde è strettamente decrescente in ogni intervallo J_{2h} (in quanto è strettamente decrescente in $[0,\pi]$). Se k è dispari (k=2h+1):

$$J_{2h+1} = [(2h+1)\pi, (2h+2)\pi], \text{ con } h \in \mathbb{Z}$$

Cioè:

$$J_{2h+1} = [\pi + 2h\pi, 2\pi + 2h\pi], \quad \text{con } h \in \mathbb{Z}$$
 (18)

Dalla circonferenza trigonometrica vediamo che cos x è strettamente crescente in $[\pi, 2\pi]$, per cui in forza della periodicità si ha che cos x è strettamente crescente in ogni intervallo J_{2h+1} .

Esplicitiamo alcuni intervalli di monotonia. Dalla (18) vediamo che $\cos x$ è strettamente crescente in:

$$h = -1 \Longrightarrow J_{-1} = [-\pi, 0]$$

$$h = 0 \Longrightarrow J_1 = [\pi, 2\pi]$$

$$h = +1 \Longrightarrow J_3 = [3\pi, 4\pi]$$

$$h = -2 \Longrightarrow J_{-3} = [-3\pi, -2\pi]$$

$$h = +2 \Longrightarrow J_5 = [5\pi, 6\pi]$$

$$h = -3 \Longrightarrow J_{-5} = [-5\pi, -4\pi]$$

$$h = +3 \Longrightarrow J_7 = [7\pi, 8\pi]$$
(19)

Nelle figg. 12-13-14-15 riportiamo il grafico della restrizione di $\cos x$ a vari intervalli.

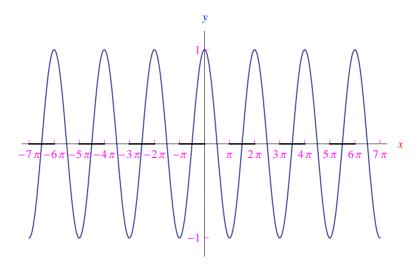


Figura 12: Grafico di $\cos x$ in $[-7\pi, 7\pi]$, da cui sono visibili gli intervalli di crescenza (19).

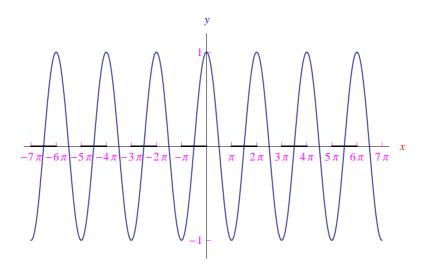


Figura 13: Grafico di $\cos x$ in $[-\pi, 2\pi]$.

Il grafico della funzione $\cos x$ si chiama **cosinusoide**. Gli zeri della funzione sono:

$$x_k = \frac{\pi}{2} + 2k\pi = \frac{\pi}{2} (2k+1), \quad \forall k \in \mathbb{Z}$$

Assume il valore +1 nei punti:

$$x_k' = 2k\pi, \ \forall k \in \mathbb{Z}$$

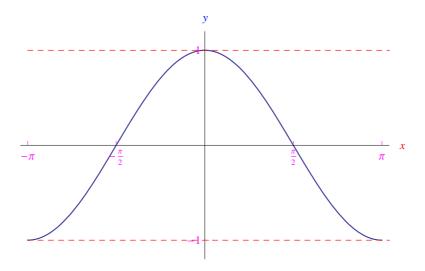


Figura 14: Grafico di $\cos x$ in $[-\pi, \pi]$.

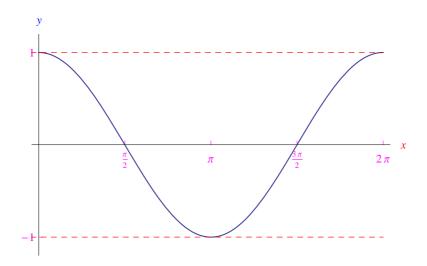


Figura 15: Grafico di $\cos x$ in $[0, 2\pi]$.

Assume il valore -1 nei punti:

$$x_{k}^{\prime\prime}=\pi+2k\pi=\pi\left(2k+1\right),\ \forall k\in\mathbb{Z}$$

La fig. riporta il grafico di $\sin x$, $\cos x$.

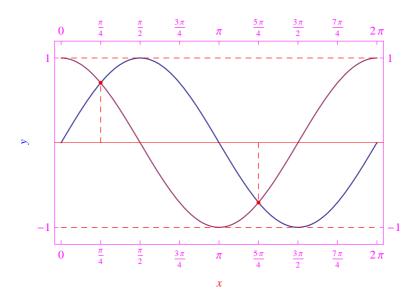


Figura 16: Grafico di $\sin x$, $\cos x$ in $[0, 2\pi]$.