SCIENTIA – http://www.scientiajournal.org International Review of Scientific Synthesis – ISSN 2282-2119 Monografia 00x - 2015

MATEMATICA OPEN SOURCE - HTTP://WWW.EXTRABYTE.INFO

La curvatura della curva di Koch e il pettine di Dirac

Marcello Colozzo

Sommario

Dimostriamo che la curvatura della curva di Koch si esprime attraverso il pettine di Dirac.

Indice

1	La f	funzione delta di Dirac	2
	1.1	Applicazione all'elettrostatica	3
	1.2	Densità del numero di punti. Il pettine di Dirac	4
	1.3	La curva di Kock	
Bi	ibliog	grafia	7

1 La funzione delta di Dirac

La funzione $\delta(x)$ di Dirac è una funzione impropria, in quanto la sua espressione analitica è formalmente data da:

 $\delta(x) = \begin{cases} 0, & \text{per } x \neq 0 \\ +\infty, & \text{per } x = 0 \end{cases}$ (1)

Non esiste alcuna funzione $f: X \to \mathbb{R}$ con $X \subseteq \mathbb{R}$, tale da verificare la (1); da qui la denominazione di "funzione impropria", ed è compito della *teoria delle distribuzioni* [1] conferire un significato preciso alla (1). Ci limitiamo a darne una giustificazione inuitiva. Precisamente, assegnato a > 0 si consideri la funzione:

$$f_a(x) = \begin{cases} 0, & \text{per } x \notin (-a, a) \\ \frac{1}{2a}, & \text{per } x \in [-a, a] \end{cases},$$
 (2)

il cui grafico è riportato in fig. 1.

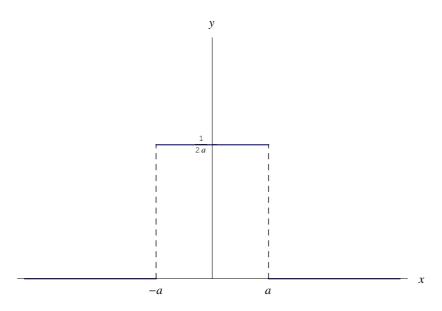


Figura 1: Grafico della funzione (2)

Intuitivamente, la (1) è riprodotta dalla seguente operazione di passaggio al limite:

$$\lim_{a\to 0^+} f_a\left(x\right),\,$$

per cui poniamo:

$$\delta\left(x\right) = \lim_{a \to 0^{+}} f_{a}\left(x\right) \tag{3}$$

Una definizione molto utilizzata nelle applicazioni è:

$$\delta(x) = \frac{d}{dx}\theta(x), \qquad (4)$$

dove $\theta(x)$ è la funzione di Heaviside:

$$\theta(x) = \begin{cases} 1, & \text{per } x > 0 \\ 0, & \text{per } x < 0 \end{cases}$$
 (5)

Dalla (2):

$$\int_{-\infty}^{+\infty} f_a(x) = 1, \quad \forall a \in (0, +\infty)$$

Da ciò segue la notevole proprietà della $\delta(x)$:

$$\int_{-\infty}^{+\infty} \delta(x) = 1 \tag{6}$$

Un'altra proprietà notevole è:

$$\int_{-\infty}^{+\infty} f(x) \, \delta(x) = f(0), \quad \forall f \in C^0(\mathbb{R})$$
 (7)

Le (6)-(7) si generalizzano a una delta di Dirac centrata in $x_0 \neq 0$:

$$\int_{-\infty}^{+\infty} \delta(x - x_0) = 1, \quad \int_{-\infty}^{+\infty} f(x) \, \delta(x - x_0) = f(x_0)$$

1.1 Applicazione all'elettrostatica

Sia data una distribuzione di N+1 cariche puntiformi q_k localizzate in N+1 punti di un segmento rappresentato dall'intervallo [a,b] dell'asse reale. Se x_k è l'ascissa di q_k , senza perdita di generalità supponiamo che sia:

$$a = x_0 < x_1 < x_2 < \dots < x_N = b \tag{8}$$

Come è noto, la (8) è una decomposizione $\mathcal{D}([a,b])$ di norma $\Delta = \max(x_{k+1} - x_k)$ dell'intervallo chiuso e limitato [a,b]. Precisamente, detto intervallo si decompone in N intervalli $[x_k, x_{k+1}]$:

$$[a,b] = \bigcup_{k=0}^{N-1} [x_k, x_{k+1}]$$
 (9)

La carica elettrica totale della distribuzione $\{q_0, q_1, ..., q_N\}$ è:

$$Q = \sum_{k=0}^{N} q_k$$

Ciò premesso, sussiste la seguente proposizione:

Proposizione 1 La distribuzione di cariche puntiformi $\{q_0, q_1, ..., q_N\}$ ha una densità deltiforme, cioè:

$$\rho_N(x) = \sum_{k=0}^{N} q_k \delta(x - x_k)$$
(10)

Dimostrazione. La carica totale di una distribuzione continua di carica elettrica localizzata in [a, b] con densità lineare $\rho(x)$ è:

$$Q = \int_{a}^{b} \rho(x) dx \tag{11}$$

Dal momento che $\rho(x) = 0$ per $x \notin (a, b)$, si ha che l'equazione precedente può essere scritta come:

$$Q = \int_{-\infty}^{+\infty} \rho(x) dx \tag{12}$$

D'altra parte:

$$\int_{-\infty}^{+\infty} \rho_N(x) dx = \sum_{k=0}^{N} q_k \int_{-\infty}^{+\infty} \delta(x - x_k) dx$$
$$= \sum_{k=0}^{N} q_k,$$

cioè la carica totale della distribuzione discreta $\{q_0, q_1, ..., q_N\}$.

Osservazione 2 Dalla (3) vediamo che la delta di Dirac ha le dimensioni dell'inverso di una lunghezza. Pertanto, la (10) ha le giuste dimensioni (carica elettrica per unità di lunghezza).

1.2 Densità del numero di punti. Il pettine di Dirac

Se nella (10) ci svincoliamo dalle cariche elettriche, nel senso che formalmente poniamo $q_k = 1$ (adimensionale), otteniamo:

$$\rho_N(x) = \sum_{k=0}^{N} \delta(x - x_k)$$
(13)

La funzione impropria (13) è denominata pettine di Dirac di ordine N e, per quanto precede, è la densità del numero di punti della decomposizione $\mathcal{D}([a,b])$. Infatti, dall'osservazione (2) segue che $\rho_N(x)$ è il numero di punti della decomposizione contenuti in un segmento di lunghezza unitaria. Più precisamente:

$$\int_{-\infty}^{+\infty} \rho_N(x) = \sum_{k=0}^{N} \int_{-\infty}^{+\infty} \delta(x - x_k) dx = N + 1,$$

cioè il numero di punti di $\mathcal{D}([a,b])$. Senza perdita di generalità, consideriamo una decomposizione di norma costante $\Delta = \frac{b-a}{N}$, cosicchè $x_k = \frac{k}{N} \, (b-a)$. Quindi:

$$\rho_N(x) = \sum_{k=0}^{N} \delta\left(x - k\frac{b-a}{N}\right) \tag{14}$$

Integrando primo e secondo membro da $-\infty$ a $+\infty$:

$$1 = \int_{-\infty}^{+\infty} \sum_{k=0}^{N} \delta\left(x - k\frac{b-a}{N}\right) dx \tag{15}$$

Per $N \to +\infty$, i.e. applicando l'operatore $\lim_{N\to +\infty}$ a primo e secondo membro della (15) si ottiene:

$$\lim_{N \to +\infty} 1 = \lim_{N \to +\infty} \int_{-\infty}^{+\infty} \frac{\sum_{k=0}^{N} \delta\left(x - k \frac{b-a}{N}\right)}{N+1} dx$$

Cioè:

$$\int_{-\infty}^{+\infty} \lim_{N \to +\infty} \frac{\sum_{k=0}^{N} \delta\left(x - k \frac{b-a}{N}\right)}{N+1} dx = 1$$

Per il teorema della media

$$\lim_{N \to +\infty} \frac{\sum_{k=0}^{N} \delta\left(x - k \frac{b-a}{N}\right)}{N+1} = \frac{1}{b-a} \int_{a}^{b} \delta\left(x - \xi\right) d\xi \tag{16}$$

Quindi:

$$\int_{-\infty}^{+\infty} dx \int_{a}^{b} d\xi \delta(x - \xi) = b - a,$$

che può essere scritta come:

$$\iint_{A} \delta(x - \xi) = b - a,$$

essendo $A = \{(x, \xi) \in \mathbb{R}^2 \mid -\infty < x < +\infty, \ a \le \xi \le b\}$. Invertendo l'ordine di integrazione:

$$\int_{a}^{b} d\xi \int_{-\infty}^{+\infty} dx \delta(x - \xi) = b - a$$

Cioè l'identità b-a=b-a. Calcoliamo l'integrale $\int_a^b \delta\left(x-\xi\right)d\xi$ che compare a secondo membro della (16). Eseguendo il cambio di variabile $y=x-\xi$:

$$\int_{a}^{b} \delta(x-\xi) d\xi = \int_{x-b}^{x-a} \delta(y) dy = \sup_{\text{eq. (4)}} \theta(y)|_{x-b}^{x-a} = \theta(x-a) - \theta(x-b),$$

Riassumendo: il pettine di Dirac di ordine N

$$\rho_N(x) = \sum_{k=0}^{N} \delta\left(x - k \frac{b-a}{N}\right)$$

è la densità del numero di punti della decomposizione $\mathcal{D}([a,b])$. La $\rho_N(x)$ verifica le relazioni (equivalenti) che esprimono il passaggio al continuo:

$$\lim_{N \to +\infty} \frac{\rho_N(x)}{N+1} = \frac{\theta(x-a) - \theta(x-b)}{b-a}, \quad \int_{-\infty}^{+\infty} \lim_{N \to +\infty} \frac{\rho_N(x)}{N+1} dx = 1$$

1.3 La curva di Kock

Come è noto, la curva di Kock è una curva frattale ottenuta per ricorsione. Intuitivamente, tale processo ricorsivo genera una curva infinitamente spigolosa. Ciò suggerisce la seguente definizione:

Definizione 3 Una curva di Kock generalizzata è il grafico Γ_f di una funzione $f:[a,b] \to \mathbb{R}$ tale che la derivata prima f'(x) ha una discontinuità di prima specie in $x, \forall \in [a,b]$. In altri termini, ogni punto di Γ_f è punto angoloso.

Possiamo allora congetturare che una curva di Kock generalizzata sia una curva integrale dell'equazione differenziale del secondo ordine di forma normale:

$$y'' = \lim_{N \to +\infty} \rho_N(x), \qquad (17)$$

Ma il termine a secondo membro è manifestamente divergente, per cui riscriviamo:

$$y'' = \rho_N(x) \tag{18}$$

Senza perdita di generalità consideriamo a = 0 e b = 0, per cui:

$$\rho_N(x) = \sum_{k=0}^{N} \delta\left(x - \frac{k}{N}\right)$$

Un integrale particolare della (18) è:

$$f_{N}(x) = \begin{cases} 0, & \text{se } x < x_{1} \\ x - x_{1}, & \text{se } x \in (x_{1}, x_{2}) \\ 2(x - x_{1}) + x_{2} - x_{1}, & \text{se } x \in (x_{2}, x_{3}) \\ 3(x - x_{3}) + 2(x_{3} - x_{1}) + x_{2} - x_{1}, & \text{se } x \in (x_{3}, x_{4}) \\ \dots \\ (N - 1)(x_{N} - x_{N-1}) + (N - 2)(x_{N-1} - x_{N-2}) + \dots + x_{2} - x_{1}, & \text{se } x \in (x_{N-1}, x_{N}) \end{cases}$$

$$(19)$$

Risulta $f_N \in C^0(\mathbb{R})$ mentre la derivata prima è continua a tratti e il suo insieme delle discontinuità è $S = \{x_k\}_{k \in \mathcal{N}}$. Per essere più specifici, $P_k(x_k, f(x_k))$ è punto angoloso per $\Gamma_f : y = f(x)$. Poniamo:

$$f\left(x\right) = \lim_{N \to +\infty} f_N\left(x\right)$$

Per quanto precede, il grafico di f(x) è una curva di Kock generalizzata. La sua curvatura in un generico punto di ascissa x si ottiene dalla nota relazione:

$$K(x) = \frac{f''(x)}{[1 + f'(x)^2]^{3/2}}$$

Cioè:

$$K(x) = \frac{\lim_{N \to +\infty} \sum_{k=0}^{N} \delta\left(x - \frac{k}{N}\right)}{\left\{1 + \left[\lim_{N \to +\infty} f'_{N}(x)\right]^{2}\right\}^{3/2}},$$

dove $f'_{N}(x)$ si ottiene dalla (19).

Riferimenti bibliografici

[1] M.J. Lighthill, Fourier Analysis and Generalized Functions. Cambridge University Press, Cambridge, 1964.