Appunti di Geometria differenziale

Marcello Colozzo - (file scaricato da http://www.extrabyte.info)

1 Complementi. Curva regolare quale classe di equivalenza

Approfondiamo le argomentazioni di una precedente lezione . Sia data la seguente funzione vettoriale della variabile reale t:

$$\mathbf{x} = \mathbf{x}(t), \quad t \in [t_1, t_2] \tag{1}$$

Tale funzione è una rappresentazione parametrica regolare di un luogo geometrico γ se:

- 1. $\mathbf{x}(t)$ è di classe $C^{p\geq 1}$ su $[t_1, t_2]$.
- 2. $\dot{\mathbf{x}}(t) \neq 0$, $\forall t \in [t_1, t_2]$.

In tal modo γ è l'immagine dell'intervallo $[t_1, t_2]$ attraverso l'applicazione $\mathbf{x}(t)$:

$$\gamma = \{ \mathbf{x}(t) \mid t \in [t_1, t_2] \} \tag{2}$$

D'altra parte, la (1) è definita a meno di una sostituzione di parametro. Tuttavia, non è possibile eseguire una sostituzione arbitraria. Dobbiamo riferirci a una particolare classe di sostituzioni. Invero, sussiste la seguente definizione:

Definizione 1 Dicesi sostituzione di parametro ammissibile relativa alla rappresentazione parametrica (1), una funzione reale

$$t = t(\theta), \forall \theta \in [\theta_1, \theta_2]$$

tale che

- 1. $t(\theta)$ è di classe $C^{p\geq 1}$ su $[\theta_1, \theta_2]$.
- 2. $\frac{dt}{d\theta} \neq 0$, $\forall \theta \in [\theta_1, \theta_2]$.

Ne segue l'invertibilità della funzione $t(\theta)$, ed è facile convincersi che la funzione inversa $\theta(t)$ è a sua volta una sostituzione di parametro ammissibile.

La sostituzione $t(\theta)$ determina la funzione vettoriale composta:

$$\mathbf{x}(t(\theta)) = \boldsymbol{\xi}(\theta), \quad \forall \theta \in [\theta_1, \theta_2]$$
 (3)

ed è una nuova rappresentazione parametrica del medesimo luogo geometrico:

$$\gamma = \{ \mathbf{x}(t) \mid t \in [t_1, t_2] \} = \{ \boldsymbol{\xi}(\theta) \mid \theta \in [\theta_1, \theta_2] \}$$

$$\tag{4}$$

Abbiamo, dunque, la seguente definizione:

Definizione 2 Due rappresentazioni regolari distinte

$$\mathbf{x} = \mathbf{x}(t), \quad t \in [t_1, t_2]$$

$$\mathbf{x} = \boldsymbol{\xi}(\theta), \quad \theta \in [\theta_1, \theta_2]$$
(5)

si dicono equivalenti se esiste una sostituzione di parametro ammissibile $t = t(\theta)$ tale che

1.
$$t([\theta_1, \theta_2]) = [t_1, t_2]$$

2.
$$\mathbf{x}(t(\theta)) = \boldsymbol{\xi}(\theta), \forall \theta \in [\theta_1, \theta_2]$$

Sia Ξ l'insieme delle rappresentazioni parametriche regolari di \mathbb{R}^n (n=2,3). La predetta definizione introduce una relazione di equivalenza in Ξ . Infatti, se \mathcal{R} è la predetta relazione si ha:

$$\mathbf{x}(t) \mathcal{R}\boldsymbol{\xi}(\theta) \stackrel{def}{\iff} \exists t(\theta) \mid \begin{cases} t([\theta_1, \theta_2]) = [t_1, t_2] \\ \mathbf{x}(t(\theta)) = \boldsymbol{\xi}(\theta), \forall \theta \in [\theta_1, \theta_2] \end{cases}$$

Teorema 3 e verifica le seguenti proprietà

1. Proprietà riflessiva

$$\mathbf{x}(t) \mathcal{R} \mathbf{x}(t), \quad \forall \mathbf{x}(t) \in \Xi$$
 (6)

2. Proprietà simmetrica

$$\mathbf{x}(t) \mathcal{R}\boldsymbol{\xi}(\theta) \Longrightarrow \boldsymbol{\xi}(\theta) \mathcal{R}\mathbf{x}(t), \quad \forall \mathbf{x}(t), \boldsymbol{\xi}(\theta) \in \Xi$$
 (7)

3. Proprietà transitiva

$$\mathbf{x}(t) \mathcal{R} \boldsymbol{\xi}(\theta), \ \boldsymbol{\xi}(\theta) \mathcal{R} \boldsymbol{\eta}(\phi) \Longrightarrow \mathbf{x}(t) \mathcal{R} \boldsymbol{\eta}(\phi), \ \forall \mathbf{x}(t), \boldsymbol{\xi}(\theta), \boldsymbol{\eta}(\phi) \in \Xi$$
 (8)

Dimostrazione. La (6) è univocamente determinata dalla sostituzione identica t=t che è manifestamente una sostituzione di parametro ammissibile. La (7) è una conseguenza dell'esistenza dell'inversa $t(\theta)$ quale sostituzione di parametro ammissibile. La terza si dimostra osservando che assegnando le sostituzioni di parametro ammissibile $t(\theta)$ e $\theta(\varphi)$ si ha una nuova sostituzione $t(\theta(\phi))$ data dalla composizione delle precedenti e tale che

$$\frac{dt}{d\phi} = \frac{dt}{d\theta} \frac{d\theta}{d\phi} \neq 0$$

onde l'asserto. ■

Dal teorema appena dimostrato segue che R è una relazione di equivalenza in Θ , e tale insieme risulta così partizionato in relazione di equivalenza, ciascuna delle quali è una curva regolare. Quindi

Definizione 4 Dicesi curva regolare una classe di equivalenza dell'insieme delle rappresentazioni regolari.