beylikdüzü eskort

evden eve nakliyat

klima kombi servisi

Annunci AdSense






[¯|¯] Limite di una funzione vettoriale di una variabile vettoriale (convergenza)

5 Febbraio, 2020 | by Marcello Colozzo |

limite di una funzione vettoriale di una variabile vettoriale,convergenza,intorno sferico

La definizione di limite di una funzione reale di una variabile reale si estende immediatamente alle funzioni vettoriali, a patto di fornire una definizione operativa di intorno di un vettore. Precisamente, se f(x) è definita in un sottoinsieme V di un assegnato spazio vettoriale, preso ad arbitrio un punto/vettore x0, definiamo un intorno sferico di raggio ε:


Siamo interessati al caso in cui x0 è di accumulazione per V, e dal momento che può non appartenere all'insieme di definizione, bisogna ridefinire la disuguaglianza come segue










Ciò premesso, sussiste la seguente definizione:
Definizione
Sia x0 un punto di accumulazione per l'insieme di definizione V di una funzione vettoriale f:E->F. Si dice che f è convergente in x0 o che converge a L, se

La precedente definizione si esprime equivalentemente come:

Per esprimere tale proprietà si usa scrivere:

No TweetBacks yet. (Be the first to Tweet this post)

Tags: , ,

Articoli correlati

Commenta l'esercizio

istanbul escort porno izle film izle