beylikdüzü eskort

evden eve nakliyat

klima kombi servisi

Annunci AdSense






[¯|¯] Accelerazione di Coriolis di un insetto su grammofono

Gennaio 18th, 2020 | by Marcello Colozzo |

accelerazione di coriolis,insetto,grammofono
Fig. 1

Esercizio di Fisica generale 1
Si determini l'accelerazione assoluta di un insetto alato che si muove radialmente e a velocità costante sul piatto di un grammofono che ruota uniformemente a velocità angolare ω. In quale direzione l'insetto dovrà spiccare il volo per liberarsi dall'accelerazione di Coriolis?

I sistemi di coordinate K (fisso) e K' (solidale al disco rotante) sono disposti come in fig. 1, dove stiamo guardando secondo la direzione dell'asse z e nel verso delle z decrescenti. Per il teorema del Coriolis:

L'accelerazione relativa è nulla poiché l'insetto si muove a velocità costante, mentre il termine di trascinamento altro non è che l'accelerazione centripeta:










Inoltre, abbiamo scelto K' orientando l'asse x' nella direzione radiale secondo cui si muove l'insetto, per cui l'accelerazione centripeta è un vettore diretto radialmente e orientato verso l'origine:


essendo x' l'ascissa dell'insetto e i' il versore dell'omonimo asse coordinato. L'accelerazione complementare (o di Coriolis) è


Ma ω,vr sono ortogonali, e tenendo conto delle orientazioni si perviene a

Quindi l'accelerazione assoluta dell'insetto è


Ricapitolando:

  • Per il solo fatto di trovarsi su un disco rotante, l'insetto ha (rispetto al riferimento fermo) un'accelerazione centripeta ac orientata verso O e di modulo ω²x'.
  • Per il fatto di muoversi rispetto a K con velocità vr, l'insetto ha un'accelerazione di Coriolis non nulla. Ed è facile convincersi che fino a quando l'insetto si muove sul piatto, la predetta accelerazione è non nulla.

Dal secondo punto appena esaminato, segue che per annullare la propria accelerazione l'insetto deve fermarsi o dovrà spiccare il volo. Precisamente, dovrà volare in una direzione parallela all'asse di rotazione (asse z). In questo caso, infatti la velocità relativa è parallela alla velocità angolare, e il corrispondente prodotto vettoriale si annnulla.

No TweetBacks yet. (Be the first to Tweet this post)

Tags: , ,

Articoli correlati

Commenta l'esercizio

istanbul escort porno izle film izle